SnO2 nanoparticles anchored on vertically aligned graphene with a high rate, high capacity, and long life for lithium storage

被引:40
|
作者
Li, Na [1 ]
Sonsg, Huawei [1 ]
Cui, Hao [1 ,2 ]
Wang, Chengxin [1 ,2 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Sch Phys Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
[2] Sun Yat Sen Zhongshan Univ, Key Lab Low Carbon Chem & Energy Conservat Guangd, Guangzhou, Guangdong, Peoples R China
关键词
vertically aligned graphene; SnO2; nanoparticles; hydrothermal; long lifespan; ONE-POT SYNTHESIS; HOLLOW NANOSPHERES; CARBON NANOTUBES; MESOPOROUS SNO2; HIGH-POWER; TIN OXIDE; ANODE; PERFORMANCE; COMPOSITE; ELECTRODES;
D O I
10.1016/j.electacta.2014.03.081
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As a high-theoretical-capacity (782 mA hg-1), low-cost and low-toxicity material, SnO2 has attracted intense interest for use as an anode electrode for lithium-ion batteries (LIBs). Despite intensive study, the practical use of SnO2-based anodes is hindered by their poor capacity retention and low rate capacity resulting from their large specific-volume changes and kinetic limitations in ion/electron transfer during the lithium ion insertion/extraction process. Improving the performance of SnO2-based electrodes has become one of the most popular scientific and industrial efforts. Herein, we present a type of SnO2-graphene composite anode in which SnO2 nanoparticles are uniformly anchored on both sides of vertically aligned graphene nanosheets (SnO2-VAGN-SnO2). The VAGNs sandwiched by the nanopartides can supply rapid ion and electron transport pathways for Li+ and e-. Such integrated electrodes exhibit high specific capacity and excellent cycling stability, even at high current densities. The cells can cycle more than 5,000 times and retain a reversible capacity of 210 mA h g-1 at 9 A g-1. A high current density of up to 20 A g-1 is achieved, and the power and energy density can reach 1576.75W kg-1 and 110.14 Wh kg-1, respectively. These performances indicate that the composite could offer the advantages of both LIBs (high energy density) and supercapacitors (high power density). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:670 / 678
页数:9
相关论文
共 50 条
  • [31] Integrated SnO2 nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries
    Zhang, Lei
    Zhao, Kangning
    Xu, Wangwang
    Dong, Yifan
    Xia, Rui
    Liu, Fengning
    He, Liang
    Wei, Qiulong
    Yan, Mengyu
    Mai, Liqiang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) : 7619 - 7623
  • [32] SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries
    Liu, Ruiping
    Zhang, Ning
    Wang, Xinyu
    Yang, Chenhui
    Cheng, Hui
    Zhao, Hanqing
    FRONTIERS OF MATERIALS SCIENCE, 2019, 13 (02) : 186 - 192
  • [33] Direct growth of SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries
    Han, Qianyan
    Zai, Jiantao
    Xiao, Yinglin
    Li, Bo
    Xu, Miao
    Qian, Xuefeng
    RSC ADVANCES, 2013, 3 (43) : 20573 - 20578
  • [34] Orderly stacked graphene sheets supporting SnO2 nanoparticles as an anode material for lithium-ion batteries with incremental capacity
    Liu, Dongdong
    Huang, Xiaoxiao
    Wei, Zengyan
    Xia, Long
    Pan, Hong
    Zhang, Tao
    Wang, Huatao
    Duan, Xiaoming
    Jia, Dechang
    Zhou, Yu
    Zhong, Bo
    APPLIED SURFACE SCIENCE, 2021, 564
  • [35] SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries
    Chen, Jun Song
    Cheah, Yan Ling
    Chen, Yuan Ting
    Jayaprakash, N.
    Madhavi, Srinivasan
    Yang, Yan Hui
    Lou, Xiong Wen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) : 20504 - 20508
  • [36] Laterally Confined Graphene Nanosheets and Graphene/SnO2 Composites as High-Rate Anode Materials for Lithium-Ion Batteries
    Wang, Zhiyong
    Zhang, Hao
    Li, Nan
    Shi, Zujin
    Gu, Zhennan
    Cao, Gaoping
    NANO RESEARCH, 2010, 3 (10) : 748 - 756
  • [37] Effects of Graphene Oxide Function Groups on SnO2/Graphene Nanocomposites for Lithium Storage Application
    Zhu, Yun Guang
    Wang, Ye
    Xie, Jian
    Cao, Gao-Shao
    Zhu, Tie-Jun
    Zhao, Xinbing
    Yang, Hui Ying
    ELECTROCHIMICA ACTA, 2015, 154 : 338 - 344
  • [38] Mo-Doped SnO2 Nanoparticles Embedded in Ultrathin Graphite Nanosheets as a High-Reversible-Capacity, Superior-Rate, and Long-Cycle-Life Anode Material for Lithium-Ion Batteries
    Feng, Yefeng
    Wu, Kaidan
    Sun, Yukun
    Guo, Zhiling
    Ke, Jin
    Huang, Xiping
    Bai, Chen
    Dong, Huafeng
    Xiong, Deping
    He, Miao
    LANGMUIR, 2020, 36 (31) : 9276 - 9283
  • [39] Dual carbon protected ultrafine SnO2 2 nanoparticles with Sn-C - C interface for robust lithium storage
    Wang, Xiaobo
    Huo, Kaixuan
    He, Zhengqiu
    Liu, Jialiang
    Zhao, Qingshan
    Zhang, Jinqiang
    Wu, Mingbo
    JOURNAL OF POWER SOURCES, 2024, 615
  • [40] Humic acid-derived graphene-SnO2 nanocomposites for high capacity lithium-ion battery anodes
    Duraia, El-Shazly M.
    Niu, Sibo
    Beall, Gary W.
    Rhodes, Christopher P.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (10) : 8456 - 8464