Learning Vector Quantization and Permutation Entropy to Analyse Epileptic Electroencephalography

被引:0
作者
Mammone, Nadia [1 ]
Kjr, Troels Wesenberg [2 ]
Duun-Henriksen, Jonas [3 ]
Campolo, Maurizio [4 ]
La Foresta, Fabio [4 ]
Morabito, Francesco C. [4 ]
机构
[1] IRCCS Ctr Neurolesi Bonino Pulejo, Via Palermo C da Casazza,SS 113, I-98124 Messina, Italy
[2] Roskilde Univ Hosp, Dept Neurol, Neurophysiol Ctr, DK-4000 Roskilde, Denmark
[3] HypoSafe AS, DK-2800 Lyngby, Denmark
[4] Mediterranean Univ Reggio Calabria, DICEAM Dept, I-89060 Reggio Di Calabria, Italy
来源
2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2015年
关键词
ALZHEIMERS-DISEASE; SCALP EEG; COMPLEXITY; SEIZURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the issue of dealing with huge amounts of data from recordings of an Electroencephalogram (EEG) in epileptic patients. In particular, the attention is focused on the development of tools to support the neurophysiologists in the time consuming and challenging task of reviewing the EEG to identify critical events that are worth of inspection for diagnostic purposes. A novel methodology is proposed for the automatic estimation of descriptors of EEG complexity and the subsequent classification of critical events. Based on the estimation of Permutation Entropy (PE) profiles from the EEG traces, the methodology relies on Learning Vector Quantization (LVQ) to cluster the electrodes in a competitive way according to their PE levels and to classify the cerebral state accordingly. An absence seizure EEG of 15.5 minutes was processed and a 93.94% sensitivity together with a 100% specificity were obtained.
引用
收藏
页数:6
相关论文
共 31 条
  • [21] Visualization and modelling of STLmax topographic brain activity maps
    Mammone, Nadia
    Principe, Jose C.
    Morabito, Francesco C.
    Shiau, Deng S.
    Sackellares, J. Chris
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2010, 189 (02) : 281 - 294
  • [22] Permutation Entropy Applied to the Characterization of the Clinical Evolution of Epileptic Patients under Pharmacological Treatment
    Mateos, Diego
    Diaz, Juan M.
    Lamberti, Pedro W.
    [J]. ENTROPY, 2014, 16 (11): : 5668 - 5676
  • [23] Enhanced Compressibility of EEG Signal in Alzheimer's Disease Patients
    Morabito, Francesco Carlo
    Labate, Domenico
    Bramanti, Alessia
    La Foresta, Fabio
    Morabito, Giuseppe
    Palamara, Isabella
    Szu, Harold H.
    [J]. IEEE SENSORS JOURNAL, 2013, 13 (09) : 3255 - 3262
  • [24] Multivariate Multi-Scale Permutation Entropy for Complexity Analysis of Alzheimer's Disease EEG
    Morabito, Francesco Carlo
    Labate, Domenico
    La Foresta, Fabio
    Bramanti, Alessia
    Morabito, Giuseppe
    Palamara, Isabella
    [J]. ENTROPY, 2012, 14 (07) : 1186 - 1202
  • [25] Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines
    Nicolaou, Nicoletta
    Georgiou, Julius
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) : 202 - 209
  • [26] Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect
    Olofsen, E.
    Sleigh, J. W.
    Dahan, A.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2008, 101 (06) : 810 - 821
  • [27] Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis
    Ouyang, Gaoxiang
    Li, Jing
    Liu, Xianzeng
    Li, Xiaoli
    [J]. EPILEPSY RESEARCH, 2013, 104 (03) : 246 - 252
  • [28] Performance of electroencephalogram-derived parameters in prediction of depth of anaesthesia in a rabbit model
    Silva, A.
    Ferreira, D. A.
    Venancio, C.
    Souza, A. P.
    Antunes, L. M.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2011, 106 (04) : 540 - 547
  • [29] Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review
    Zanin, Massimiliano
    Zunino, Luciano
    Rosso, Osvaldo A.
    Papo, David
    [J]. ENTROPY, 2012, 14 (08) : 1553 - 1577
  • [30] Classifying Epileptic EEG Signals with Delay Permutation Entropy and Multi-scale K-Means
    Zhu, Guohun
    Li, Yan
    Wen, Peng
    Wang, Shuaifang
    [J]. SIGNAL AND IMAGE ANALYSIS FOR BIOMEDICAL AND LIFE SCIENCES, 2015, 823 : 143 - 157