Learning Vector Quantization and Permutation Entropy to Analyse Epileptic Electroencephalography

被引:0
作者
Mammone, Nadia [1 ]
Kjr, Troels Wesenberg [2 ]
Duun-Henriksen, Jonas [3 ]
Campolo, Maurizio [4 ]
La Foresta, Fabio [4 ]
Morabito, Francesco C. [4 ]
机构
[1] IRCCS Ctr Neurolesi Bonino Pulejo, Via Palermo C da Casazza,SS 113, I-98124 Messina, Italy
[2] Roskilde Univ Hosp, Dept Neurol, Neurophysiol Ctr, DK-4000 Roskilde, Denmark
[3] HypoSafe AS, DK-2800 Lyngby, Denmark
[4] Mediterranean Univ Reggio Calabria, DICEAM Dept, I-89060 Reggio Di Calabria, Italy
来源
2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2015年
关键词
ALZHEIMERS-DISEASE; SCALP EEG; COMPLEXITY; SEIZURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the issue of dealing with huge amounts of data from recordings of an Electroencephalogram (EEG) in epileptic patients. In particular, the attention is focused on the development of tools to support the neurophysiologists in the time consuming and challenging task of reviewing the EEG to identify critical events that are worth of inspection for diagnostic purposes. A novel methodology is proposed for the automatic estimation of descriptors of EEG complexity and the subsequent classification of critical events. Based on the estimation of Permutation Entropy (PE) profiles from the EEG traces, the methodology relies on Learning Vector Quantization (LVQ) to cluster the electrodes in a competitive way according to their PE levels and to classify the cerebral state accordingly. An absence seizure EEG of 15.5 minutes was processed and a 93.94% sensitivity together with a 100% specificity were obtained.
引用
收藏
页数:6
相关论文
共 31 条
  • [1] Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure
    Abásolo, D
    Hornero, R
    Gómez, C
    García, M
    López, M
    [J]. MEDICAL ENGINEERING & PHYSICS, 2006, 28 (04) : 315 - 322
  • [2] Multivariate multiscale entropy: A tool for complexity analysis of multichannel data
    Ahmed, Mosabber Uddin
    Mandic, Danilo P.
    [J]. PHYSICAL REVIEW E, 2011, 84 (06):
  • [3] Entropy of the EEG in transition to burst suppression in deep anesthesia: surrogate analysis.
    Anier, Andres
    Lipping, Tarmo
    Jaentti, Ville
    Puumala, Pasi
    Huotari, Ari-Matti
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 2790 - 2793
  • [4] [Anonymous], 2014, RECENT ADV NEURAL NE
  • [5] Permutation entropy: A natural complexity measure for time series
    Bandt, C
    Pompe, B
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 4
  • [6] Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study
    Bruzzo, Angela A.
    Gesierich, Benno
    Santi, Maurizio
    Tassinari, Carlo Alberto
    Birbaumer, Niels
    Rubboli, Guido
    [J]. NEUROLOGICAL SCIENCES, 2008, 29 (01) : 3 - 9
  • [7] Cao YH, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046217
  • [8] Automatic Detection of Childhood Absence Epilepsy Seizures: Toward a Monitoring Device
    Duun-Henriksen, Jonas
    Madsen, Rasmus E.
    Remvig, Line S.
    Thomsen, Carsten E.
    Sorensen, Helge B. D.
    Kjaer, Troels W.
    [J]. PEDIATRIC NEUROLOGY, 2012, 46 (05) : 287 - 292
  • [9] Channel selection for automatic seizure detection
    Duun-Henriksen, Jonas
    Kjaer, Troels Wesenberg
    Madsen, Rasmus Elsborg
    Remvig, Line Sofie
    Thomsen, Carsten Eckhart
    Sorensen, Helge Bjarup Dissing
    [J]. CLINICAL NEUROPHYSIOLOGY, 2012, 123 (01) : 84 - 92
  • [10] Permutation entropy of scalp EEG: A tool to investigate epilepsies Suggestions from absence epilepsies
    Ferlazzo, Edoardo
    Mammone, Nadia
    Cianci, Vittoria
    Gasparini, Sara
    Gambardella, Antonio
    Labate, Angelo
    Latella, Maria Adele
    Sofia, Vito
    Elia, Maurizio
    Morabito, Francesco Carlo
    Aguglia, Umberto
    [J]. CLINICAL NEUROPHYSIOLOGY, 2014, 125 (01) : 13 - 20