Solitary Waves for Linearly Coupled Nonlinear Schrodinger Equations with Inhomogeneous Coefficients

被引:30
作者
Belmonte-Beitia, Juan [1 ,2 ]
Perez-Garcia, Victor M. [1 ,2 ]
Torres, Pedro J. [3 ]
机构
[1] Univ Castilla La Mancha, Dept Matemat, ETS Ingenieros Ind, E-13071 Ciudad Real, Spain
[2] Univ Castilla La Mancha, IMACI, E-13071 Ciudad Real, Spain
[3] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Nonlinear Schrodinger systems; Solitary waves; Fixed-point theorems in cones; POSITIVE SOLUTIONS; EINSTEIN; OSCILLATIONS; SOLITONS; DYNAMICS; POISSON;
D O I
10.1007/s00332-008-9037-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the study of matter waves in Bose-Einstein condensates and coupled nonlinear optical systems, we study a system of two coupled nonlinear Schrodinger equations with inhomogeneous parameters, including a linear coupling. For that system, we prove the existence of two different kinds of homoclinic solutions to the origin describing solitary waves of physical relevance. We use a Krasnoselskii fixed point theorem together with a suitable compactness criterion.
引用
收藏
页码:437 / 451
页数:15
相关论文
共 60 条
[1]   Propagation of matter-wave solitons in periodic and random nonlinear potentials [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW A, 2005, 72 (06)
[2]   Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations [J].
Ambrosetti, A. ;
Colorado, E. ;
Ruiz, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :85-112
[3]   Bound and ground states of coupled nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Colorado, E .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :453-458
[4]   Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn [J].
Ambrosetti, Antonio ;
Cerami, Giovanna ;
Ruiz, David .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2816-2845
[5]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[6]  
[Anonymous], 2003, Optical Solitons
[7]  
[Anonymous], 2003, FIXED POINT THEOR-RO, DOI DOI 10.1007/978-0-387-21593-8
[8]  
[Anonymous], 2000, NONLINEAR SCHRODINGE
[9]   Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Torres, Pedro J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[10]  
Belmonte-Beitia J, 2008, DISCRETE CONT DYN-B, V9, P221