Thermally activated reversible shape switch of polymer particles

被引:72
作者
Gong, Tao [1 ]
Zhao, Kun [1 ]
Wang, Wenxi [1 ]
Chen, Hongmei [1 ]
Wang, Lin [1 ]
Zhou, Shaobing [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Technol Mat, Chengdu 610031, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
EPSILON-CAPROLACTONE; MEMORY POLYMERS; CELLULAR INTERNALIZATION; MECHANICAL-PROPERTIES; TEMPERATURE MEMORY; DRUG CARRIERS; DESIGN; DELIVERY; NANOCOMPOSITES; COMPOSITES;
D O I
10.1039/c4tb01155d
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The particles that can reversibly switch shape in response to an environmental stimulus are preferable for controlling the performance of drug carriers. In this work, we present a facile strategy towards the design and fabrication of polymer particles that can reversibly switch their shape on the basis of a biocompatible and biodegradable polymer network containing well-defined six-arm poly(ethylene glycol)-poly(epsilon-caprolactone) (6A PEG-PCL). These polymer particles have a capacity of reversibly changing shape from spherical to elliptical either extracellularly or intracellularly with the cyclic heating and cooling between 43 degrees C and 0 degrees C under a stress-free condition via a reversible two-way shape memory effect (2W-SME) of a polymer matrix. This study of the shape-switching particles opens up exciting possibilities for engineering dynamically shape-switching drug delivery carriers to either avoid or promote phagocytosis.
引用
收藏
页码:6855 / 6866
页数:12
相关论文
共 58 条
[1]   Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation [J].
Baker, Richard M. ;
Henderson, James H. ;
Mather, Patrick T. .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (38) :4916-4920
[2]   Reversible Bidirectional Shape-Memory Polymers [J].
Behl, Marc ;
Kratz, Karl ;
Zotzmann, Joerg ;
Noechel, Ulrich ;
Lendlein, Andreas .
ADVANCED MATERIALS, 2013, 25 (32) :4466-4469
[3]   Multifunctional Shape-Memory Polymers [J].
Behl, Marc ;
Razzaq, Muhammad Yasar ;
Lendlein, Andreas .
ADVANCED MATERIALS, 2010, 22 (31) :3388-3410
[4]   Role of target geometry in phagocytosis [J].
Champion, JA ;
Mitragotri, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (13) :4930-4934
[5]   Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers [J].
Champion, Julie A. ;
Katare, Yogesh K. ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2007, 121 (1-2) :3-9
[6]   Top-Down Fabrication of Sub-30 nm Monocrystalline Silicon Nanowires Using Conventional Microfabrication [J].
Chen, Songyue ;
Bomer, Johan G. ;
van der Wiel, Wilfred G. ;
Carlen, Edwin T. ;
van den Berg, Albert .
ACS NANO, 2009, 3 (11) :3485-3492
[7]   A Strategy in The Design of Micellar Shape for Cancer Therapy [J].
Chen, Tao ;
Guo, Xing ;
Liu, Xian ;
Shi, Shuai ;
Wang, Jie ;
Shi, Chunli ;
Qian, Zhiyong ;
Zhou, Shaobing .
ADVANCED HEALTHCARE MATERIALS, 2012, 1 (02) :214-224
[8]   Two-way reversible shape memory in a semicrystalline network [J].
Chung, Taekwoong ;
Rorno-Uribe, Angel ;
Mather, Patrick T. .
MACROMOLECULES, 2008, 41 (01) :184-192
[9]   Dynamic cell behavior on shape memory polymer substrates [J].
Davis, Kevin A. ;
Burke, Kelly A. ;
Mather, Patrick T. ;
Henderson, James H. .
BIOMATERIALS, 2011, 32 (09) :2285-2293
[10]   Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks [J].
Doshi, Nishit ;
Prabhakarpandian, Balabhaskar ;
Rea-Ramsey, Angela ;
Pant, Kapil ;
Sundaram, Shivshankar ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2010, 146 (02) :196-200