Experimental study of non-stationary operation of a dual-wavelength passively mode-locked fibre ring laser

被引:5
作者
Ibarra Villalon, H. E. [1 ,2 ]
Pottiez, O. [2 ]
Bracamontes Rodriguez, Y. E. [2 ]
Lauterio-Cruz, J. P. [3 ]
Gomez Vieyra, A. [4 ]
机构
[1] Univ Autonoma Metropolitana, Unidad Iztapalapa, Posgrad Fis, San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
[2] Ctr Invest Opt AC, Lomas Bosque 115, Leon 37150, Mexico
[3] DICIS Univ Guanajuato, Dept Elect, Carr Salamanca Valle Santiago Km 3-5 1-8, Salamanca 36885, Gto, Mexico
[4] Univ Autonoma Metropolitana, Unidad Azcapotzalco, Dept Ciencias Basicas, Av San Pablo 180, Mexico City 02200, DF, Mexico
关键词
passive mode locking; fibre laser; dissipative solitons; noise-like pulse; NOISE-LIKE PULSES; REPETITION-RATE; GENERATION; SOLITONS; LOCKING; SENSOR;
D O I
10.1088/1555-6611/aab65d
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we report an experimental study of different dynamics taking place in a 20 m long passively mode-locked fibre ring laser in dual-wavelength operation, at 1531 nm and 1558 nm. For different polarization adjustments, self-starting mode locking is obtained, yielding different types of emission: bunches of solitons in quasi-stationary regime, a compact bunch of solitons coexisting with loose bunches of solitons, a noise-like pulse coexisting with bunches of solitons and a noise-like pulse displaying quasi-periodic fluctuations. In each regime, we extract information on the pulse dynamics from measurements of the temporal profile evolution using a 16 GHz real-time oscilloscope and, at the same time, we propose a phase-space diagram representation of the intensity versus the energy of the temporal profile of the pulses; the latter allows evidencing patterns that could not be identified using conventional measurement techniques.
引用
收藏
页数:10
相关论文
共 52 条
[1]  
Agrawal G, 2008, APPL NONLINEAR FIBER, P210
[2]   Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach [J].
Akhmediev, N ;
Soto-Crespo, JM ;
Town, G .
PHYSICAL REVIEW E, 2001, 63 (05) :566021-566021
[3]   Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter [J].
Amrani, F. ;
Haboucha, A. ;
Salhi, M. ;
Leblond, H. ;
Komarov, A. ;
Sanchez, F. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 99 (1-2) :107-114
[4]   OPTICAL COHERENCE TOMOGRAPHIC IMAGING OF HUMAN TISSUE AT 1.55 μM AND 1.81 μM USING ER- AND TM-DOPED FIBER SOURCES [J].
Bouma, Brett E. ;
Nelson, Lynn E. ;
Tearney, Guillermo J. ;
Jones, David J. ;
Brezinski, Mark E. ;
Fujimoto, James G. .
JOURNAL OF BIOMEDICAL OPTICS, 1998, 3 (01) :76-79
[5]  
Bracamontes-Rodriguez Y.E., 2017, J. Opt., V19
[6]  
Buck J A, 2004, FUNDAMENTALS OPTICAL, P134
[7]   Rains of solitons in a fiber laser [J].
Chouli, Souad ;
Grelu, Philippe .
OPTICS EXPRESS, 2009, 17 (14) :11776-11781
[8]   Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers [J].
Churkin, D. V. ;
Sugavanam, S. ;
Tarasov, N. ;
Khorev, S. ;
Smirnov, S. V. ;
Kobtsev, S. M. ;
Turitsyn, S. K. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Grating sensor array demodulation by use of a passively mode-locked fiber laser [J].
Dennis, ML ;
Putnam, MA ;
Kang, JU ;
Tsai, TE ;
Duling, IN ;
Friebele, EJ .
OPTICS LETTERS, 1997, 22 (17) :1362-1364
[10]   HIGH REPETITION RATE FIGURE 8 LASER WITH EXTRACAVITY FEEDBACK [J].
DENNIS, ML ;
DULING, IN .
ELECTRONICS LETTERS, 1992, 28 (20) :1894-1896