Numerical Hopf bifurcation for a class of delay differential equations

被引:53
作者
Wulf, V [1 ]
Ford, NJ [1 ]
机构
[1] Univ Coll Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
关键词
delay differential equations; numerical methods; Hopf bifurcation;
D O I
10.1016/S0377-0427(99)00181-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider discretization of parameter-dependent delay differential equations of the form x'(t) = f(x(t),x(t - tau),lambda), lambda epsilon R. We show that, if the delay differential equation undergoes a Hopf bifurcation, then the discrete scheme undergoes a Hopf bifurcation of the same type. The results of this paper extend the results of our previous analysis relating to the discretization of the delay logistic equation to a wider class of problems. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 12 条
[1]  
[Anonymous], ANN NUMER MATH
[2]  
Bellman R., 1963, DIFFERENTIAL DIFFERE
[3]  
Chow S.N., 1983, Methods of bifurcation theory
[4]  
FORD NJ, 1998, 322 MCCM MANCH U
[5]  
FORD NJ, 1998, 323 MCCM MANCH U
[6]   The life-span of backward error analysis for numerical integrators [J].
Hairer, E ;
Lubich, C .
NUMERISCHE MATHEMATIK, 1997, 76 (04) :441-462
[7]  
Hassard B., 1981, Theory and Applications of Hopf Bifurcation
[8]   Periodic orbits of delay differential equations under discretization [J].
Hout, KI ;
Lubich, C .
BIT, 1998, 38 (01) :72-91
[9]   Naimark-Sacker bifurcations in the Euler method for a delay differential equation [J].
Koto, T .
BIT NUMERICAL MATHEMATICS, 1999, 39 (01) :110-115
[10]  
Kuznetsov Y., 1998, ELEMENTS APPL BIFURC