Accepted Elasticity in Local Arithmetic Congruence Monoids

被引:2
|
作者
Crawford, Lorin [1 ]
Ponomarenko, Vadim [2 ]
Steinberg, Jason [3 ]
Williams, Marla [4 ]
机构
[1] Clark Atlanta Univ, Atlanta, GA 30314 USA
[2] San Diego State Univ, San Diego, CA 92182 USA
[3] Princeton Univ, Princeton, NJ 08544 USA
[4] Willamette Univ, Salem, OR 97301 USA
基金
美国国家科学基金会;
关键词
Non-unique factorization; arithmetical congruence monoid; accepted elasticity; elasticity of factorization; KRULL DOMAINS; FACTORIZATIONS;
D O I
10.1007/s00025-014-0374-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For certain , an Arithmetic Congruence Monoid M(a, b) is a multiplicatively closed subset of given by . An irreducible in this monoid is any element that cannot be factored into two elements, each greater than 1. Each monoid element (apart from 1) may be factored into irreducibles in at least one way. The elasticity of a monoid element (apart from 1) is the longest length of a factorization into irreducibles, divided by the shortest length of a factorization into irreducibles. The elasticity of the monoid is the supremum of the elasticities of the monoid elements. A monoid has accepted elasticity if there is some monoid element that has the same elasticity as the monoid. An Arithmetic Congruence Monoid is local if gcd(a, b) is a prime power (apart from 1). It has already been determined whether Arithmetic Congruence Monoids have accepted elasticity in the non-local case; we make make significant progress in the local case, i.e. for many values of a, b.
引用
收藏
页码:227 / 245
页数:19
相关论文
共 50 条
  • [1] Accepted Elasticity in Local Arithmetic Congruence Monoids
    Lorin Crawford
    Vadim Ponomarenko
    Jason Steinberg
    Marla Williams
    Results in Mathematics, 2014, 66 : 227 - 245
  • [2] A theorem on accepted elasticity in certain local arithmetical congruence monoids
    M. Banister
    J. Chaika
    S. T. Chapman
    W. Meyerson
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2009, 79 : 79 - 86
  • [3] A theorem on accepted elasticity in certain local arithmetical congruence monoids
    Banister, M.
    Chaika, J.
    Chapman, S. T.
    Meyerson, W.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2009, 79 (01): : 79 - 86
  • [4] ARITHMETIC OF CONGRUENCE MONOIDS
    Fujiwara, Arielle
    Gibson, Joseph
    Jenssen, Matthew O.
    Montealegre, Daniel
    Ponomarenko, Vadim
    Tenzer, Ari
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3407 - 3421
  • [5] On the Elasticity of Generalized Arithmetical Congruence Monoids
    Chapman, S. T.
    Steinberg, David
    RESULTS IN MATHEMATICS, 2010, 58 (3-4) : 221 - 231
  • [6] On the Elasticity of Generalized Arithmetical Congruence Monoids
    S. T. Chapman
    David Steinberg
    Results in Mathematics, 2010, 58 : 221 - 231
  • [7] Congruence monoids
    Geroldinger, A
    Halter-Koch, F
    ACTA ARITHMETICA, 2004, 112 (03) : 263 - 296
  • [8] On congruence compact monoids
    Bulman-Fleming, S
    Hotzel, E
    Normak, P
    MATHEMATIKA, 1999, 46 (91) : 205 - 224
  • [9] A congruence of plane monoids
    De Vries, J
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1927, 30 (1/5): : 566 - 568
  • [10] On the arithmetic of monoids of ideals
    Geroldinger, Alfred
    Khadam, M. Azeem
    ARKIV FOR MATEMATIK, 2022, 60 (01): : 67 - 106