Lipid raft redox signaling platforms in vascular dysfunction: Features and mechanisms

被引:16
作者
Jin, Si [1 ]
Zhou, Fan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Pharmacol, Tongji Med Coll, Wuhan 430030, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
SMOOTH-MUSCLE-CELLS; ACID SPHINGOMYELINASE; NADPH OXIDASE; ENDOTHELIAL-CELLS; NAD(P)H OXIDASE; DEATH RECEPTOR; OXIDATIVE STRESS; FUNCTIONAL RAFTS; PLASMA-MEMBRANE; ACTIVATION;
D O I
10.1007/s11883-009-0034-6
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Lipid rafts (LRs) play essential roles in transmembrane signal transduction. Upon death factor stimulation, individual LRs cluster to recruit NADPH oxidase subunits and related proteins in vascular endothelial cells, forming LR redox signaling platforms, which ultimately results in increased production of reactive oxygen species in endothelial cells and impaired endothelial function. Mechanistically, ceramide generated from the hydrolysis of sphingomyelin by lysosomal acid sphingomyelinase spontaneously fuses to form ceramide-enriched macrodomains, which are critical contributors to the formation of LR redox signaling platforms. These LR signaling platforms play important roles in the development of endothelial dysfunction or injury upon pathologic insults.
引用
收藏
页码:220 / 226
页数:7
相关论文
共 50 条
[21]   Albumin-Like Proteins Are Critical Regulators of Vascular Redox Signaling [J].
Ramos, Kenneth S. ;
Stribinskis, Vilius ;
Steffen, Marlene C. ;
Nanez, Adrian ;
Montoya-Durango, Diego ;
He, Qiang .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2013, 2013
[22]   Homocysteine Excess and Vascular Endothelium Dysfunction: Delineating the Pathobiological Mechanisms [J].
Bhatia, Pankaj ;
Gupta, Sushma ;
Sharma, Saurabh .
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2014, 10 (04) :200-212
[23]   Induction of HO-1 and redox signaling in endothelial cells by advanced glycation end products: A role for Nrf2 in vascular protection in diabetes [J].
He, M. ;
Siow, R. C. M. ;
Sugden, D. ;
Gao, L. ;
Cheng, X. ;
Mann, G. E. .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2011, 21 (04) :277-285
[24]   Vascular Redox Signaling, Endothelial Nitric Oxide Synthase Uncoupling, and Endothelial Dysfunction in the Setting of Transportation Noise Exposure or Chronic Treatment with Organic Nitrates [J].
Muenzel, Thomas ;
Daiber, Andreas .
ANTIOXIDANTS & REDOX SIGNALING, 2023, 38 (13) :1001-1021
[25]   Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction [J].
Lee, Seung Eun ;
Park, Yong Seek .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2013, 2013
[26]   Targeting Redox Signaling in the Vascular Wall: From Basic Science to Clinical Practice [J].
Antoniades, Charalambos ;
Antonopoulos, Alexios S. ;
Bendall, Jennifer K. ;
Channon, Keith M. .
CURRENT PHARMACEUTICAL DESIGN, 2009, 15 (03) :329-342
[27]   An overview of mechanisms of redox signaling [J].
Forman, Henry Jay ;
Ursini, Fulvio ;
Maiorino, Matilde .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2014, 73 :2-9
[28]   Ras nanoclusters: Versatile lipid-based signaling platforms [J].
Zhou, Yong ;
Hancock, John F. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2015, 1853 (04) :841-849
[29]   TGF-β signaling in vascular biology and dysfunction [J].
Goumans, Marie-Jose ;
Liu, Zhen ;
ten Dijke, Peter .
CELL RESEARCH, 2009, 19 (01) :116-127
[30]   Nano-titanium dioxide inhalation exposure during gestation drives redox dysregulation and vascular dysfunction across generations [J].
Bowdridge, Elizabeth C. ;
DeVallance, Evan ;
Garner, Krista L. ;
Griffith, Julie A. ;
Schafner, Kallie ;
Seaman, Madison ;
Engels, Kevin J. ;
Wix, Kimberley ;
Batchelor, Thomas P. ;
Goldsmith, William T. ;
Hussain, Salik ;
Nurkiewicz, Timothy R. .
PARTICLE AND FIBRE TOXICOLOGY, 2022, 19 (01)