A minimally informative likelihood for decision analysis: illustration and robustness

被引:7
作者
Yuan, A [1 ]
Clarke, BS [1 ]
机构
[1] Howard Univ, Natl Human Genome Ctr, Washington, DC 20059 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1999年 / 27卷 / 03期
关键词
information; rate distortion function; Blahut-Arimoto algorithm; robustness;
D O I
10.2307/3316119
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors discuss a class of likelihood functions involving weak assumptions on data generating mechanisms. These likelihoods may be appropriate when it is difficult to propose models for the data. The properties of these likelihoods are given and it is shown how they can be computed numerically by use of the Blahut-Arimoto algorithm. The authors then show how these likelihoods can give useful inferences using a data set for which no plausible physical model is apparent. The plausibility of the inferences is enhanced by the extensive robustness analysis these likelihoods permit.
引用
收藏
页码:649 / 665
页数:17
相关论文
共 50 条