Fabrication of paper-based analytical devices optimized by central composite design

被引:11
|
作者
Hamedpour, Vahid [1 ]
Leardi, Riccardo [2 ]
Suzuki, Koji [1 ]
Citterio, Daniel [1 ]
机构
[1] Keio Univ, Dept Appl Chem, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[2] Univ Genoa, Dept Pharm, Genoa, Italy
关键词
RESPONSE-SURFACE METHODOLOGY; SILVER NANOPARTICLES; PLASMON RESONANCE; BOX-BEHNKEN; SENSOR; CHEMOMETRICS; CHALLENGES; PLATFORM;
D O I
10.1039/c8an00332g
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, an application of a design of experiments approach for the optimization of an isoniazid assay on a single-area inkjet-printed paper-based analytical device (PAD) is described. For this purpose, a central composite design was used for evaluation of the effect of device geometry and amount of assay reagents on the efficiency of the proposed device. The factors of interest were printed length, width, and sampling volume as factors related to device geometry, and amounts of the assay reagents polyvinyl alcohol (PVA), NH4OH, and AgNO3. Deposition of the assay reagents was performed by a thermal inkjet printer. The colorimetric assay mechanism of this device is based on the chemical interaction of isoniazid, ammonium hydroxide, and PVA with silver ions to induce the formation of yellow silver nanoparticles (AgNPs). The in situ-formed AgNPs can be easily detected by the naked eye or with a simple flat-bed scanner. Under optimal conditions, the calibration curve was linear in the isoniazid concentration range 0.03-10 mmol L-1 with a relative standard deviation of 3.4% (n = 5 for determination of 1.0 mmol L-1). Finally, the application of the proposed device for isoniazid determination in pharmaceutical preparations produced satisfactory results.
引用
收藏
页码:2102 / 2108
页数:7
相关论文
共 50 条
  • [41] Microfluidic Paper-based Analytical Devices in Clinical Applications
    Tingting Han
    Yuhang Jin
    Chunyang Geng
    Aziz ur Rehman Aziz
    Yang Zhang
    Sha Deng
    Haijun Ren
    Bo Liu
    Chromatographia, 2020, 83 : 693 - 701
  • [42] Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs)
    Strong, E. Brandon
    Schultz, Spencer A.
    Martinez, Andres W.
    Martinez, Nathaniel W.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [43] Recent developments in electrochemical paper-based analytical devices
    Oh, Jung-Min
    Chow, Kwok-Fan
    ANALYTICAL METHODS, 2015, 7 (19) : 7951 - 7960
  • [44] Microfluidic paper-based analytical devices for cancer diagnosis
    Shalaby, Ahmed A.
    Tsao, Chia-Wen
    Ishida, Akihiko
    Maeki, Masatoshi
    Tokeshi, Manabu
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 379
  • [46] Composable paper-based analytical devices for determination of flavonoids
    Gutorova, Svetlana V.
    Apyari, Vladimir V.
    Kalinin, Vyacheslav I.
    Furletov, Aleksei A.
    Tolmacheva, Veronika V.
    Gorbunova, Maria V.
    Dmitrienko, Stanislava G.
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 331
  • [47] Microfluidic Paper-based Analytical Devices in Clinical Applications
    Han, Tingting
    Jin, Yuhang
    Geng, Chunyang
    Aziz, Aziz Ur Rehman
    Zhang, Yang
    Deng, Sha
    Ren, Haijun
    Liu, Bo
    CHROMATOGRAPHIA, 2020, 83 (06) : 693 - 701
  • [48] Blood separation on microfluidic paper-based analytical devices
    Songjaroen, Temsiri
    Dungchai, Wijitar
    Chailapakul, Orawon
    Henry, Charles S.
    Laiwattanapaisal, Wanida
    LAB ON A CHIP, 2012, 12 (18) : 3392 - 3398
  • [49] Chromatographic paper-based analytical devices using an oxidized paper substrate
    Hashimoto, Yuki
    Kaneta, Takashi
    ANALYTICAL METHODS, 2019, 11 (02) : 179 - 184
  • [50] Covalent Attachment of Enzymes to Paper Fibers for Paper-Based Analytical Devices
    Boehm, Alexander
    Trosien, Simon
    Avrutina, Olga
    Kolmar, Harald
    Biesalski, Markus
    FRONTIERS IN CHEMISTRY, 2018, 6