Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future

被引:194
作者
Fennell, John F., Jr. [1 ,2 ]
Liu, Sophie F. [1 ,2 ]
Azzarelli, Joseph M. [1 ,2 ]
Weis, Jonathan G. [1 ,2 ]
Rochat, Sebastien [1 ,2 ]
Mirica, Katherine A. [1 ,2 ]
Ravnsbaek, Jens B. [1 ,2 ]
Swager, Timothy M. [1 ,2 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
metal oxides; nanocarbons; nanowires; sensors; transductionmechanism; WALLED CARBON NANOTUBES; LABEL-FREE DETECTION; CONDUCTING POLYMER NANOWIRES; MOLECULAR WIRE APPROACH; GAS-SENSING PROPERTIES; ELECTRICAL DETECTION; THIN-FILMS; OXIDE NANOSTRUCTURES; CONJUGATED POLYMERS; SELECTIVE DETECTION;
D O I
10.1002/anie.201505308
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemiresistive sensors are becoming increasingly important as they offer an inexpensive option to conventional analytical instrumentation, they can be readily integrated into electronic devices, and they have low power requirements. Nanowires (NWs) are a major theme in chemosensor development. High surface area, interwire junctions, and restricted conduction pathways give intrinsically high sensitivity and new mechanisms to transduce the binding or action of analytes. This Review details the status of NW chemosensors with selected examples from the literature. We begin by proposing a principle for understanding electrical transport and transduction mechanisms in NW sensors. Next, we offer the reader a review of device performance parameters. Then, we consider the different NW types followed by a summary of NW assembly and different device platform architectures. Subsequently, we discuss NW functionalization strategies. Finally, we propose future developments in NW sensing to address selectivity, sensor drift, sensitivity, response analysis, and emerging applications.
引用
收藏
页码:1266 / 1281
页数:16
相关论文
共 258 条
[1]   A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor [J].
Abraham, JK ;
Philip, B ;
Witchurch, A ;
Varadan, VK ;
Reddy, CC .
SMART MATERIALS & STRUCTURES, 2004, 13 (05) :1045-1049
[2]   NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives [J].
Afzal, Adeel ;
Cioffi, Nicola ;
Sabbatini, Luigia ;
Torsi, Luisa .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 171 :25-42
[3]   Graphene/Polyaniline Nanocomposite for Hydrogen Sensing [J].
Al-Mashat, Laith ;
Shin, Koo ;
Kalantar-zadeh, Kourosh ;
Plessis, Johan D. ;
Han, Seung H. ;
Kojima, Robert W. ;
Kaner, Richard B. ;
Li, Dan ;
Gou, Xinglong ;
Ippolito, Samuel J. ;
Wlodarski, Wojtek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16168-16173
[4]   Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites [J].
An, KH ;
Jeong, SY ;
Hwang, HR ;
Lee, YH .
ADVANCED MATERIALS, 2004, 16 (12) :1005-+
[5]  
[Anonymous], ANGEW CHEM
[6]  
[Anonymous], 2015, EXPOSURE CHEM AGENTS
[7]   Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor [J].
Aravinda, C. L. ;
Cosnier, Serge ;
Chen, Wilfred ;
Myung, Nosang V. ;
Mulchandani, Ashok .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (05) :1451-1455
[8]   Virus-PEDOT Nanowires for Biosensing [J].
Arter, Jessica A. ;
Taggart, David K. ;
McIntire, Theresa M. ;
Penner, Reginald M. ;
Weiss, Gregory A. .
NANO LETTERS, 2010, 10 (12) :4858-4862
[9]   Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations [J].
Asuri, Prashanth ;
Karajanagi, Sandeep S. ;
Sellitto, Edward ;
Kim, Dae-Yun ;
Kane, Ravi S. ;
Dordick, Jonathan S. .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 95 (05) :804-811
[10]   Wireless gas detection with a smartphone via rf communication [J].
Azzarelli, Joseph M. ;
Mirica, Katherine A. ;
Ravnsbaek, Jens B. ;
Swager, Timothy M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (51) :18162-18166