Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefiable soils

被引:17
作者
Tang Liang [1 ,2 ]
Maula, Baydaa Hussain [1 ,2 ]
Ling Xianzhang [1 ,2 ]
Su Lei [1 ,2 ]
机构
[1] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
liquefaction; pile pinning; soil improvement; pile deformation; earthquake; nonlinear finite element method; shake-table experiment; CYCLIC MOBILITY; BEHAVIOR;
D O I
10.1007/s11803-014-0221-5
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A shake-table experiment on pile foundations in liquefiable soils composed of liquefiable sand and overlying soft clay is studied. A three-dimensional (3D) effective stress finite element (FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation (u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled (u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fixed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively influence the lateral pile displacements.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 25 条
[1]   Evaluation of piled foundation response to lateral spreading [J].
Abdoun, T ;
Dobry, R .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2002, 22 (9-12) :1051-1058
[2]  
[Anonymous], 1988, THESIS U WALES SWANS
[3]   THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (02) :182-185
[4]   Seismic soil-pile-structure interaction experiments and analyses [J].
Boulanger, RW ;
Curras, CJ ;
Kutter, BL ;
Wilson, DW ;
Abghari, A .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 1999, 125 (09) :750-759
[5]  
[陈国兴 CHEN Guoxing], 2007, [地震工程与工程振动, Earthquake Engineering and Engineering Vibration], V27, P163
[6]   Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils [J].
Cubrinovski, M ;
Kokusho, T ;
Ishihara, K .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2006, 26 (2-4) :275-286
[7]   Modeling of cyclic mobility in saturated cohesionless soils [J].
Elgamal, A ;
Yang, ZH ;
Parra, E ;
Ragheb, A .
INTERNATIONAL JOURNAL OF PLASTICITY, 2003, 19 (06) :883-905
[8]   Computational modeling of cyclic mobility and post-liquefaction site response [J].
Elgamal, A ;
Yang, ZH ;
Parra, E .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2002, 22 (04) :259-271
[9]  
Elgamal A., 2004, J GEOTECH GEOL ENG, V26, P335
[10]   Piles in liquefiable soils: seismic analysis and design issues [J].
Finn, WDL ;
Fujita, N .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2002, 22 (9-12) :731-742