Function of CYP11A1 in the mitochondria

被引:49
|
作者
Chien, Yu [1 ]
Rosal, Karen [1 ]
Chung, Bon-chu [1 ]
机构
[1] Acad Sinica, Inst Mol Biol, 128 Acad Rd Sect 2, Taipei 115, Taiwan
关键词
CYP11A1; Steroidogenic acute regulatory protein; Steroidogenesis; Mitochondria; Electron transport chain; Cristae; ACUTE REGULATORY PROTEIN; SIDE-CHAIN CLEAVAGE; CHARCOT-MARIE-TOOTH; ADRENAL-CORTEX; PHOSPHOLIPID-VESICLES; CORPUS-LUTEUM; PURIFIED CYTOCHROME-P-450SCC; CHOLESTEROL TRANSPORT; ENDOPLASMIC-RETICULUM; ADRENODOXIN REDUCTASE;
D O I
10.1016/j.mce.2016.10.030
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Steroids are synthesized from the adrenal glands and gonads by enzymes of the cytochromes P450 and hydroxysteroid dehydrogenase in nature. These enzymes are located in the membrane of endoplasmic reticulum and mitochondria to catalyze redox reactions using electrons transported from the membrane. In the mitochondria, steroidogenic enzymes are inserted into the inner membrane with the bulk of the protein facing the matrix. They are not only important for steroid biosynthesis, their presence also affects mitochondrial morphology. Mitochondria undergo constant fission and fusion; they play important roles in energy production, apoptosis, and metabolism. Their defects often lead to human diseases. Mitochondrial cristae are usually lamellar in shape, but can also assume different shapes. Cristae in the mitochondria of steroidogenic cells are tubular-vesicular in shape. This cristae shape is also related to the degree of steroidogenic cell differentiation. Steroidogenic enzymes in the mitochondria appear to have a dual role in shaping the morphology of mitochondria and in steroid production. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [1] Function of Cyp11a1 in animal models
    Hu, MC
    Hsu, HJ
    Guo, IC
    Chung, BC
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2004, 215 (1-2) : 95 - 100
  • [2] Import of hybrid forms of CYP11A1 into yeast mitochondria
    Minenko, A. N.
    Novikova, L. A.
    Luzikov, V. N.
    Kovaleva, I. E.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2008, 1780 (10): : 1121 - 1130
  • [3] On the effect of cholesterol on the fate of CYP11A1 imported into yeast mitochondria in vivo
    Kovaleva, IE
    Grivennikov, SI
    Luzikov, VN
    BIOCHEMISTRY-MOSCOW, 2000, 65 (10) : 1206 - 1211
  • [4] CYP11A1 stimulates the hydroxylase activity of CYP11B1 in mitochondria of recombinant yeast in vivo and in vitro
    Cauet, G
    Balbuena, D
    Achstetter, T
    Dumas, B
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (14): : 4054 - 4062
  • [5] Transcriptional regulation of CYP11A1
    Guo, IC
    Hu, MC
    Chung, BC
    JOURNAL OF BIOMEDICAL SCIENCE, 2003, 10 (06) : 593 - 598
  • [6] The A’-helix of CYP11A1 remodels mitochondrial cristae
    Karen G. Rosal
    Wei-Yi Chen
    Bon-chu Chung
    Journal of Biomedical Science, 29
  • [7] The Role Of Cyp11a1 Polymorphisms In Asthma Susceptibility
    Schedel, M.
    Michel, S.
    Franke, A.
    Von Berg, A.
    Bufe, A.
    Rietschel, E.
    Heinzmann, A.
    Laub, O.
    Simma, B.
    Frischer, T.
    Genuneit, J.
    Kabesch, M.
    Gelfand, E.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189
  • [8] Study of the function of proximal SF-1 binding sites on CYP11A1 promoter
    Hsu, NC
    Shih, MC
    Chung, B
    ENDOCRINE RESEARCH, 2004, 30 (04) : 813 - 814
  • [9] Transcriptional regulation of the CYP11A1 and ferredoxin genes
    Chung, BC
    Guo, IC
    Chou, SJ
    STEROIDS, 1997, 62 (01) : 37 - 42
  • [10] Resurrection and characterization of ancestral CYP11A1 enzymes
    Hartz, Philip
    Strohmaier, Silja J.
    El-Gayar, Basma M.
    Abdulmughni, Ammar
    Hutter, Michael C.
    Hannemann, Frank
    Gillam, Elizabeth M. J.
    Bernhardt, Rita
    FEBS JOURNAL, 2021, 288 (22) : 6510 - 6527