Fermat quotients for composite moduli

被引:48
作者
Agoh, T
Dilcher, K
Skula, L
机构
[1] SCI UNIV TOKYO, DEPT MATH, NODA, CHIBA 278, JAPAN
[2] DALHOUSIE UNIV, DEPT MATH STAT & COMP SCI, HALIFAX, NS B3H 3J5, CANADA
[3] MASARYK UNIV, FAC SCI, DEPT MATH, BRNO 66295, CZECH REPUBLIC
关键词
D O I
10.1006/jnth.1997.2162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analogues of Fermat quotients for a composite modulus m greater than or equal to 2 are investigated, with special emphasis on various congruences. In particular, the numbers m for which a(phi(m)) = 1 (mod m(2)), where gcd(a, m)= 1, (''Wieferich numbers with base a'') are completely characterized in terms of the Wieferich primes with base a. (C) 1997 Academic Press.
引用
收藏
页码:29 / 50
页数:22
相关论文
共 17 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
AGOH T, IN PRESS MATH COMP
[3]  
Baker HF, 1907, P LOND MATH SOC, V4, P131
[4]   A search for Wieferich and Wilson primes [J].
Crandall, R ;
Dilcher, K ;
Pomerance, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :433-449
[5]  
DICKSON LE, 1962, HIST THEORY NUMBERS, V1
[6]   ON A CONJECTURE OF CRANDALL CONCERNING THE QX+1 PROBLEM [J].
FRANCO, Z ;
POMERANCE, C .
MATHEMATICS OF COMPUTATION, 1995, 64 (211) :1333-1336
[7]  
KELLER W, 1988, ABSTR AM MATH SOC, V9, P503
[8]   ON FERMAT QUOTIENT, BASE 2 [J].
LEHMER, DH .
MATHEMATICS OF COMPUTATION, 1981, 36 (153) :289-290
[9]   On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J].
Lehmer, E .
ANNALS OF MATHEMATICS, 1938, 39 :350-360
[10]  
Lerch, 1906, CR HEBD ACAD SCI, V142, P35