ITERATIVE ALGORITHMS FOR EQUILIBRIUM PROBLEMS BASED ON PROXIMAL-LIKE METHODS

被引:0
|
作者
Bao, J. F. [1 ]
Fang, D. H. [2 ]
Li, C. [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Jishou Univ, Coll Math & Stat, Jishou 416000, Peoples R China
基金
中国国家自然科学基金;
关键词
Equilibrium problems; projection method; error bound; linear convergence; ERROR-BOUNDS; SYSTEMS; CONVERGENCE; INEQUALITY; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present two algorithms, namely Algorithm 1.2 and Algorithm 1.3, with most violated constraint control strategy used in the projection method for solving equilibrium problems. Compared with the projection methods, both algorithms are designed to avoid computing the projection to the nonlinear level set. Under certain conditions, the convergences of the Algorithm 1.2 and Algorithm 1.3 are established, and the linear convergence rate of Algorithm 1.3 is obtained. At last, some examples to illustrate the convergence performance of Algorithm 1.2 and Algorithm 1.3 are given.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [1] Equilibrium programming using proximal-like algorithms
    Flam, SD
    Antipin, AS
    MATHEMATICAL PROGRAMMING, 1997, 78 (01) : 29 - 41
  • [2] Simple proximal-type algorithms for equilibrium problems
    Yao, Yonghong
    Adamu, Abubakar
    Shehu, Yekini
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (04) : 1069 - 1098
  • [4] Iterative algorithms for equilibrium problems
    Iusem, AN
    Sosa, W
    OPTIMIZATION, 2003, 52 (03) : 301 - 316
  • [5] Hybrid proximal methods for equilibrium problems
    Mordukhovich, Boris S.
    Panicucci, Barbara
    Pappalardo, Massimo
    Passacantando, Mauro
    OPTIMIZATION LETTERS, 2012, 6 (07) : 1535 - 1550
  • [6] On iterative methods for equilibrium problems
    Yao, Yonghong
    Noor, Muhammad Aslam
    Liou, Yeong-Cheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 497 - 509
  • [7] Iterative methods for equilibrium problems
    Noor, MA
    Noor, KI
    ADVANCES IN FLUID MECHANICS V, 2004, 40 : 73 - 81
  • [8] Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems
    Iusem, A.
    Lara, F.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 443 - 461
  • [9] The Iterative Methods for Solving Pseudomontone Equilibrium Problems
    Yang, Jun
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (03)
  • [10] Explicit iterative algorithms for solving equilibrium problems
    Dang Van Hieu
    Pham Kim Quy
    Le Van Vy
    CALCOLO, 2019, 56 (02)