MIMR-DGSA: Unsupervised hyperspectral band selection based on information theory and a modified discrete gravitational search algorithm

被引:60
作者
Tschannerl, Julius [1 ]
Ren, Jinchang [1 ]
Yuen, Peter [2 ]
Sun, Genyun [3 ,7 ]
Zhao, Huimin [4 ]
Yang, Zhijing [5 ]
Wang, Zheng [6 ]
Marshall, Stephen [1 ]
机构
[1] Univ Strathclyde, Ctr Signal & Image Proc, Glasgow, Lanark, Scotland
[2] Cranfield Univ, Ctr Elect Warfare, Electroopt Image & Signal Proc, Swindon, Wilts, England
[3] China Univ Petr, Sch Geosci, Qingdao, Shandong, Peoples R China
[4] Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou, Guangdong, Peoples R China
[5] Guangdong Univ Technol, Sch Elect Informat, Guangzhou, Guangdong, Peoples R China
[6] Tianjin Univ, Sch Comp Software, Tianjin, Peoples R China
[7] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Mineral Resources, Qingdao, Shandong, Peoples R China
基金
英国生物技术与生命科学研究理事会;
关键词
Band selection; Discrete optimisation; Entropy; Evolutionary computation; Feature selection; Gravitational search algorithm; Hyperspectral imaging; Maximum-Information-Minimum-Redundancy; Mutual information; PARTICLE SWARM OPTIMIZATION; CLASSIFICATION;
D O I
10.1016/j.inffus.2019.02.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Band selection plays an important role in hyperspectral data analysis as it can improve the performance of data analysis without losing information about the constitution of the underlying data. We propose a MIMR-DGSA algorithm for band selection by following the Maximum-Information-Minimum-Redundancy (MIMR) criterion that maximises the information carried by individual features of a subset and minimises redundant information between them. Subsets are generated with a modified Discrete Gravitational Search Algorithm (DGSA) where we definine a neighbourhood concept for feature subsets. A fast algorithm for pairwise mutual information calculation that incorporates variable bandwidths of hyperspectral bands called VarBWFastMI is also developed. Classification results on three hyperspectral remote sensing datasets show that the proposed MIMR-DGSA performs similar to the original MIMR with Clonal Selection Algorithm (CSA) but is computationally more efficient and easier to handle as it has fewer parameters for tuning.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 35 条
  • [1] On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    Amaldi, E
    Kann, V
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) : 237 - 260
  • [2] Methodology for hyperspectral band selection
    Bajcsy, P
    Groves, P
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2004, 70 (07) : 793 - 802
  • [3] A discrete gravitational search algorithm for solving combinatorial optimization problems
    Dowlatshahi, Mohammad Bagher
    Nezamabadi-Pour, Hossein
    Mashinchi, Mashaallah
    [J]. INFORMATION SCIENCES, 2014, 258 : 94 - 107
  • [4] Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis
    Du, Qian
    Yang, He
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) : 564 - 568
  • [5] Eiben Agoston E., 2011, Autonomous Search, P15, DOI DOI 10.1007/978-3-642-21434-9_2
  • [6] Feature Subset Selection Approach by Gray-Wolf Optimization
    Emary, E.
    Zawbaa, Hossam M.
    Grosan, Crina
    Hassenian, Abul Ella
    [J]. AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT, AECIA 2014, 2015, 334 : 1 - 13
  • [7] Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images
    Feng, Jie
    Jiao, Licheng
    Liu, Fang
    Sun, Tao
    Zhang, Xiangrong
    [J]. PATTERN RECOGNITION, 2016, 51 : 295 - 309
  • [8] Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
    Green, RO
    Eastwood, ML
    Sarture, CM
    Chrien, TG
    Aronsson, M
    Chippendale, BJ
    Faust, JA
    Pavri, BE
    Chovit, CJ
    Solis, MS
    Olah, MR
    Williams, O
    [J]. REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) : 227 - 248
  • [9] Bandwidth selection for kernel density estimation: a review of fully automatic selectors
    Heidenreich, Nils-Bastian
    Schindler, Anja
    Sperlich, Stefan
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (04) : 403 - 433
  • [10] Holzwarth S., 2003, 3 EARSEL WORKSH IM S, P12