Combinatorial identities for tenth order mock theta functions

被引:0
|
作者
Goyal, Megha [1 ]
Rana, M. [2 ]
机构
[1] IK Gujral Punjab Tech Univ, Dept Math Sci, Main Campus, Kapurthala 144603, India
[2] Thapar Univ, Sch Math, Patiala 147001, Punjab, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2019年 / 129卷 / 03期
关键词
Mock theta functions; lattice paths; color partitions; Bender-Knuth matrices; Frobenius partitions; 05A15; 05A17; 05A19; 11P81; LATTICE PATHS;
D O I
10.1007/s12044-019-0475-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the open problem posed by Sareen and Rana (Proc. Indian Acad. Sci. (Math. Sci.)126 (2016) 549-556) is addressed. Here, we interpret two tenth order mock theta functions combinatorially in terms of lattice paths. Then we extend enumeration of one of these with Bender-Knuth matrices; the other by using Frobenius partitions. The combinatorial interpretation of one of these mock theta functions in terms of Frobenius partitions gives an answer to the open problem. Finally, we establish bijections between different classes of combinatorial objects which lead us to one 4-way and one 3-way combinatorial identity.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Universal mock theta functions and two-variable Hecke-Rogers identities
    Garvan, F. G.
    RAMANUJAN JOURNAL, 2015, 36 (1-2): : 267 - 296
  • [42] Combinatorial proofs for identities related to generalizations of themock theta functions ω(q) and ν (q)
    Li, Frank Z. K.
    Yang, Jane Y. X.
    RAMANUJAN JOURNAL, 2019, 50 (03): : 527 - 550
  • [43] 100 Years of mock theta functions
    Andrews, George E.
    RAMANUJAN JOURNAL, 2025, 66 (01): : 1 - 14
  • [44] Families of multisums as mock theta functions
    Gu, Nancy S. S.
    Liu, Jing
    ADVANCES IN APPLIED MATHEMATICS, 2016, 79 : 98 - 124
  • [45] On recursions for coefficients of mock theta functions
    Chan S.H.
    Mao R.
    Osburn R.
    Research in Number Theory, 1 (1)
  • [46] Some new mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    ADVANCES IN APPLIED MATHEMATICS, 2021, 131
  • [47] The Bailey chain and mock theta functions
    Lovejoy, Jeremy
    Osburn, Robert
    ADVANCES IN MATHEMATICS, 2013, 238 : 442 - 458
  • [48] ON SOME NEW MOCK THETA FUNCTIONS
    Gu, Nancy S. S.
    Hao, Li-Jun
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 107 (01) : 53 - 66
  • [49] On mock theta functions of Gordon and McIntosh
    Kaur, H.
    Rana, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [50] ON FOUR NEW MOCK THETA FUNCTIONS
    Hu, Qiuxia
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 345 - 354