Inversion of general tridiagonal matrices

被引:67
作者
El-Mikkawy, Moawwad [1 ]
Karawia, Abdelrahman [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
tridiagonal matrix; inverse matrix; determinants; computer algebra systems (CAS);
D O I
10.1016/j.aml.2005.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current work, the authors present a symbolic algorithm for finding the inverse of any general nonsingular tridiagonal matrix. The algorithm is mainly based on the work presented in [Y. Huang, W.F. McColl, Analytic inversion of general tridiagonal matrices, J. Phys. A 30 (1997) 7919-7933] and [M.E.A. El-Mikkawy, A fast algorithm for evaluating nth order tridiagonal determinants, J. Comput. Appl. Math. 166 (2004) 581-584]. It removes all cases where the numeric algorithm in [Y. Huang, W.F. McColl, Analytic inversion of general tridiagonal matrices, J. Phys. A 30 (1997) 7919-7933] fails. The symbolic algorithm is suited for implementation using Computer Algebra Systems (CAS) such as MACSYMA, MAPLE and MATHEMATICA. An illustrative example is given. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:712 / 720
页数:9
相关论文
共 50 条
  • [41] Tridiagonal Matrices and Spectral Properties of Some Graph Classes
    Milica Anđelić
    Zhibin Du
    Carlos M. da Fonseca
    Slobodan K. Simić
    Czechoslovak Mathematical Journal, 2020, 70 : 1125 - 1138
  • [42] Truncations of a class of pseudo-Hermitian tridiagonal matrices
    Derevyagin, Maxim
    Perotti, Luca
    Wojtylak, Michal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (02) : 738 - 758
  • [43] Sufficient conditions for positive definiteness of tridiagonal matrices revisited
    Milica Anđelić
    C. M. da Fonseca
    Positivity, 2011, 15 : 155 - 159
  • [44] Some nilpotent, tridiagonal matrices with a special sign pattern
    Behn, Antonio
    Driessel, Kenneth R.
    Hentzel, Irvin Roy
    Vander Velden, Kent A.
    Wilson, James
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4446 - 4450
  • [45] The inverse positivity of perturbed tridiagonal M-matrices
    Huang, Jie
    Huang, Ting-Zhu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) : 131 - 143
  • [46] The Construction of Horadam Numbers in Terms of the Determinant of Tridiagonal Matrices
    Taskara, N.
    Uslu, K.
    Yazlik, Y.
    Yilmaz, N.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [47] Eigenpairs of a family of tridiagonal matrices: three decades later
    C. M. Da Fonseca
    V. Kowalenko
    Acta Mathematica Hungarica, 2020, 160 : 376 - 389
  • [48] Sufficient conditions for positive definiteness of tridiagonal matrices revisited
    Andelic, Milica
    da Fonseca, C. M.
    POSITIVITY, 2011, 15 (01) : 155 - 159
  • [49] RELATION BETWEEN DETERMINANTS OF TRIDIAGONAL AND CERTAIN PENTADIAGONAL MATRICES
    Borowska, Jolanta
    Lacinska, Lena
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2014, 13 (03) : 21 - 27
  • [50] The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows
    Wei, Yunlan
    Zheng, Yanpeng
    Jiang, Zhaolin
    Shon, Sugoog
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 623 - 636