Inversion of general tridiagonal matrices

被引:67
作者
El-Mikkawy, Moawwad [1 ]
Karawia, Abdelrahman [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
tridiagonal matrix; inverse matrix; determinants; computer algebra systems (CAS);
D O I
10.1016/j.aml.2005.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current work, the authors present a symbolic algorithm for finding the inverse of any general nonsingular tridiagonal matrix. The algorithm is mainly based on the work presented in [Y. Huang, W.F. McColl, Analytic inversion of general tridiagonal matrices, J. Phys. A 30 (1997) 7919-7933] and [M.E.A. El-Mikkawy, A fast algorithm for evaluating nth order tridiagonal determinants, J. Comput. Appl. Math. 166 (2004) 581-584]. It removes all cases where the numeric algorithm in [Y. Huang, W.F. McColl, Analytic inversion of general tridiagonal matrices, J. Phys. A 30 (1997) 7919-7933] fails. The symbolic algorithm is suited for implementation using Computer Algebra Systems (CAS) such as MACSYMA, MAPLE and MATHEMATICA. An illustrative example is given. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:712 / 720
页数:9
相关论文
共 50 条
  • [21] Structured distance to normality of tridiagonal matrices
    Bebiano, Natalia
    Furtado, Susana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 552 : 239 - 255
  • [22] Kippenhahn Curves of Some Tridiagonal Matrices
    Bebiano, Natalia
    da Providencia, Joao
    Spitkovsky, Ilya
    Vazquez, Kenya
    FILOMAT, 2021, 35 (09) : 3047 - 3061
  • [23] Spectra of certain large tridiagonal matrices
    Veerman, J. J. P.
    Hammond, David K.
    Baldivieso, Pablo E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 548 : 123 - 147
  • [24] Eigenvectors of tridiagonal matrices of Sylvester type
    Chu, Wenchang
    Wang, Xiaoyuan
    CALCOLO, 2008, 45 (04) : 217 - 233
  • [25] Tridiagonal and single-pair matrices and the inverse sum of two single-pair matrices
    Bossu, Sebastien
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 129 - 158
  • [26] Chebyshev polynomials, Catalan numbers, and tridiagonal matrices
    Artisevich, A. E.
    Bychkov, B. S.
    Shabat, A. B.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 204 (01) : 837 - 842
  • [27] Inverses of Tridiagonal Matrices under Simple Perturbationse
    Cheng, Sui Sun
    Yueh, Wen-Chyuan
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 659 - 681
  • [28] Chebyshev polynomials, Catalan numbers, and tridiagonal matrices
    A. E. Artisevich
    B. S. Bychkov
    A. B. Shabat
    Theoretical and Mathematical Physics, 2020, 204 : 837 - 842
  • [29] The complete positivity of symmetric tridiagonal and pentadiagonal matrices
    Cao, Lei
    McLaren, Darian
    Plosker, Sarah
    SPECIAL MATRICES, 2023, 11 (01):
  • [30] Minimum permanents of tridiagonal doubly stochastic matrices
    Song, SZ
    Jun, YB
    LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (04) : 301 - 306