Inversion of general tridiagonal matrices

被引:67
作者
El-Mikkawy, Moawwad [1 ]
Karawia, Abdelrahman [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
tridiagonal matrix; inverse matrix; determinants; computer algebra systems (CAS);
D O I
10.1016/j.aml.2005.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current work, the authors present a symbolic algorithm for finding the inverse of any general nonsingular tridiagonal matrix. The algorithm is mainly based on the work presented in [Y. Huang, W.F. McColl, Analytic inversion of general tridiagonal matrices, J. Phys. A 30 (1997) 7919-7933] and [M.E.A. El-Mikkawy, A fast algorithm for evaluating nth order tridiagonal determinants, J. Comput. Appl. Math. 166 (2004) 581-584]. It removes all cases where the numeric algorithm in [Y. Huang, W.F. McColl, Analytic inversion of general tridiagonal matrices, J. Phys. A 30 (1997) 7919-7933] fails. The symbolic algorithm is suited for implementation using Computer Algebra Systems (CAS) such as MACSYMA, MAPLE and MATHEMATICA. An illustrative example is given. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:712 / 720
页数:9
相关论文
共 50 条
  • [1] Non-symbolic algorithms for the inversion of tridiagonal matrices
    Abderraman Marrero, J.
    Rachidi, M.
    Tomeo, V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 252 : 3 - 11
  • [2] A new recursive algorithm for inverting general tridiagonal and anti-tridiagonal matrices
    El-Mikkawy, Moawwad
    Rahmo, El-Desouky
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 368 - 372
  • [3] An inversion algorithm for general tridiagonal matrix
    Ran, Rui-sheng
    Huang, Ting-zhu
    Liu, Xing-ping
    Gu, Tong-xiang
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (02) : 247 - 253
  • [4] An inversion algorithm for general tridiagonal matrix
    Rui-sheng Ran
    Ting-zhu Huang
    Xing-ping Liu
    Tong-xiang Gu
    Applied Mathematics and Mechanics, 2009, 30 : 247 - 253
  • [5] An inversion algorithm for general tridiagonal matrix
    冉瑞生
    黄廷祝
    刘兴平
    谷同祥
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (02) : 247 - 253
  • [6] On the inverse and determinant of general bordered tridiagonal matrices
    Jia, Jiteng
    Li, Sumei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (06) : 503 - 509
  • [7] Some comments on k-tridiagonal matrices: Determinant, spectra, and inversion
    da Fonseca, Carlos M.
    Yilmaz, Fatih
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 644 - 647
  • [8] Inversion of Tridiagonal Matrices Using the Dunford-Taylor's Integral
    Caratelli, Diego
    Ricci, Paolo Emilio
    SYMMETRY-BASEL, 2021, 13 (05):
  • [9] Symbolic algorithms for the inverses of general k-tridiagonal matrices
    Jia, Jiteng
    Li, Sumei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (12) : 3032 - 3042
  • [10] A note on representations for the inverses of tridiagonal matrices
    Abderraman Marrero, J.
    Rachidi, M.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (09) : 1181 - 1191