Robin double-phase problems with singular and superlinear terms

被引:3
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ,6 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[6] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Nonhomogeneous differential operator; Nonlinear regularity theory; Truncation; Strong comparison principle; Positive solutions; EQUATIONS;
D O I
10.1016/j.nonrwa.2020.103217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Robin problem driven by the sum of p-Laplacian and q-Laplacian (i.e. the (p, q)-equation). In the reaction there are competing effects of a singular term and a parametric perturbation lambda f (z, x), which is Caratheodory and (p - 1)-superlinear at x is an element of R, without satisfying the Ambrosetti-Rabinowitz condi-tion. Using variational tools, together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter lambda > 0 varies. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] On the uniqueness for weak solutions of steady double-phase fluids
    Abdelwahed, Mohamed
    Berselli, Luigi C.
    Chorfi, Nejmeddine
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 454 - 468
  • [42] Very singular solutions for linear Dirichlet problems with singular convection terms
    Boccardo, Lucio
    Orsina, Luigi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194
  • [43] Multiplicity of positive solutions of superlinear semi-positone singular Neumann problems
    Qiuyue Li
    Fuzhong Cong
    Zhe Li
    Jinkai Lv
    Boundary Value Problems, 2014 (1)
  • [44] Multiplicity of positive solutions of superlinear semi-positone singular Neumann problems
    Li, Qiuyue
    Cong, Fuzhong
    Li, Zhe
    Lv, Jinkai
    BOUNDARY VALUE PROBLEMS, 2014,
  • [45] CONNECTED COMPONENT OF POSITIVE SOLUTIONS FOR SINGULAR SUPERLINEAR SEMI-POSITONE PROBLEMS
    Ma, Ruyun
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (01) : 51 - 62
  • [46] Gradient Higher Integrability for Degenerate Parabolic Double-Phase Systems
    Kim, Wontae
    Kinnunen, Juha
    Moring, Kristian
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (05)
  • [47] Singular Double Phase Equations
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1031 - 1044
  • [48] Semilinear elliptic problems with singular terms on the Heisenberg group
    Kumar, Dharmendra
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (11) : 1844 - 1853
  • [49] Nonlinear nonhomogeneous Dirichlet problems with singular and convection terms
    Nikolaos S. Papageorgiou
    Youpei Zhang
    Boundary Value Problems, 2020
  • [50] On Bobkov-Tanaka type spectrum for the double-phase operator
    Gambera, Laura
    Guarnotta, Umberto
    ADVANCED NONLINEAR STUDIES, 2025,