Robin double-phase problems with singular and superlinear terms

被引:3
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ,6 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[6] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Nonhomogeneous differential operator; Nonlinear regularity theory; Truncation; Strong comparison principle; Positive solutions; EQUATIONS;
D O I
10.1016/j.nonrwa.2020.103217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Robin problem driven by the sum of p-Laplacian and q-Laplacian (i.e. the (p, q)-equation). In the reaction there are competing effects of a singular term and a parametric perturbation lambda f (z, x), which is Caratheodory and (p - 1)-superlinear at x is an element of R, without satisfying the Ambrosetti-Rabinowitz condi-tion. Using variational tools, together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter lambda > 0 varies. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条