Robin double-phase problems with singular and superlinear terms

被引:3
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ,6 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[6] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Nonhomogeneous differential operator; Nonlinear regularity theory; Truncation; Strong comparison principle; Positive solutions; EQUATIONS;
D O I
10.1016/j.nonrwa.2020.103217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Robin problem driven by the sum of p-Laplacian and q-Laplacian (i.e. the (p, q)-equation). In the reaction there are competing effects of a singular term and a parametric perturbation lambda f (z, x), which is Caratheodory and (p - 1)-superlinear at x is an element of R, without satisfying the Ambrosetti-Rabinowitz condi-tion. Using variational tools, together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter lambda > 0 varies. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 22 条
[1]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[2]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22
[3]  
Gasinski L., 2016, EXERCISES ANAL PART
[4]  
Gasinski L., 2006, Nonlinear Analysis
[5]  
Ghergu M., 2008, OXFORD LECT SERIES M, V37
[6]  
Giacomoni J, 2007, ANN SCUOLA NORM-SCI, V6, P117
[7]   THE NATURAL GENERALIZATION OF THE NATURAL CONDITIONS OF LADYZHENSKAYA AND URALTSEVA FOR ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (2-3) :311-361
[8]  
Papageorgiou N.S., 2014, J DIFFER EQUATIONS, V254, P393
[9]  
Papageorgiou N. S., 2018, APPL NONLINEAR FUNCT
[10]  
Papageorgiou N.S., 2019, MODERN NONLINEAR ANA