Microfluidic electrospinning of biphasic nanofibers with Janus morphology

被引:41
作者
Srivastava, Yasmin [1 ]
Marquez, Manuel [2 ,3 ]
Thorsen, Todd [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] NIST Ctr Theoret & Computat Nanosci, Gaithersburg, MD 20899 USA
[3] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA
来源
BIOMICROFLUIDICS | 2009年 / 3卷 / 01期
关键词
cellular biophysics; microfluidics; nanostructured materials; polymer fibres; scanning electron microscopy; tissue engineering; transmission electron microscopy; MULTIPLE JETS; FABRICATION; PARTICLES; HOLLOW; DESIGN; CO; MICROPARTICLES; NANOPARTICLES; POLYPYRROLE; ANISOTROPY;
D O I
10.1063/1.3009288
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this paper a method of electrospinning conducting and nonconducting biphasic Janus nanofibers using microfluidic polydimethylsiloxane (PDMS)-based manifolds is described. Key benefits of using microfluidic devices for nanofiber synthesis include rapid prototyping, ease of fabrication, and the ability to spin multiple Janus fibers in parallel through arrays of individual microchannels. Biphasic Janus nanofibers of polyvinylpyrrolidone (PVP)+polypyrrole (PPy)/PVP nanofibers with an average diameter of 250 nm were successfully fabricated using elastomeric microfluidic devices. Fiber characterization and confirmation of the Janus morphology was subsequently carried out using a combination of scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy.
引用
收藏
页数:6
相关论文
共 31 条
[11]   Direct fabrication of composite and ceramic hollow nanofibers by electrospinning [J].
Li, D ;
Xia, YN .
NANO LETTERS, 2004, 4 (05) :933-938
[12]   Self-crimping bicomponent nanoribers efectrospun from polyacrylonitrile and elastomeric polyurethane [J].
Lin, T ;
Wang, HX ;
Wang, XG .
ADVANCED MATERIALS, 2005, 17 (22) :2699-+
[13]   An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method [J].
Liu, Zhaoyang ;
Sun, Darren Delai ;
Guo, Peng ;
Leckie, James O. .
NANO LETTERS, 2007, 7 (04) :1081-1085
[14]   Electrically forced coaxial nanojets for one-step hollow nanofiber design [J].
Loscertales, IG ;
Barrero, A ;
Márquez, M ;
Spretz, R ;
Velarde-Ortiz, R ;
Larsen, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (17) :5376-5377
[15]   Electrostatically-generated nanofibers of electronic polymers [J].
MacDiarmid, AG ;
Jones, WE ;
Norris, ID ;
Gao, J ;
Johnson, AT ;
Pinto, NJ ;
Hone, J ;
Han, B ;
Ko, FK ;
Okuzaki, H ;
Llaguno, M .
SYNTHETIC METALS, 2001, 119 (1-3) :27-30
[16]   Electrospinning of nanofibers with core-sheath, hollow, or porous structures [J].
McCann, JT ;
Li, D ;
Xia, YN .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (07) :735-738
[17]   Fabrication of electrically conducting polypyrrole-poly(ethylene oxide) composite nanofibers [J].
Nair, S ;
Natarajan, S ;
Kim, SH .
MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (20) :1599-1603
[18]   Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly [J].
Nie, Zhihong ;
Li, Wei ;
Seo, Minseok ;
Xu, Shengqing ;
Kumacheva, Eugenia .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (29) :9408-9412
[19]   Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system [J].
Nisisako, Takasi ;
Torii, Toru ;
Takahashi, Takanori ;
Takizawa, Yoichi .
ADVANCED MATERIALS, 2006, 18 (09) :1152-+
[20]   Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique [J].
Paunov, VN ;
Cayre, OJ .
ADVANCED MATERIALS, 2004, 16 (9-10) :788-+