Nitrogen turnover and N2O/N2 ratio of three contrasting tropical soils amended with biochar

被引:19
|
作者
Fungo, Bernard [1 ,2 ,3 ]
Chen, Zhe [4 ]
Butterbach-Bahl, Klaus [4 ,7 ]
Lehmannn, Johannes [5 ]
Saiz, Gustavo [4 ,11 ]
Braojos, Victor [4 ]
Kolar, Allison [4 ]
Rittl, Tatjana F. [4 ,9 ]
Tenywa, Moses [8 ]
Kalbitz, Karsten [2 ,6 ]
Neufeldt, Henry [3 ,10 ]
Dannenmann, Michael [4 ]
机构
[1] NARO, POB 1752, Kampala, Uganda
[2] Univ Amsterdam, IBED, Fac Sci, Sci Pk 904, Amsterdam, Netherlands
[3] World Agroforestry Ctr ICRAF, POB 30677,United Nations Ave, Nairobi 00100, Kenya
[4] KIT, Atmospher Environm Res IMK IFU, Inst Meteorol & Climate Res, Kreuzeckbahnstr 19, D-82467 Garmisch Partenkirchen, Germany
[5] Cornell Univ, Dept Crop & Soil Sci, Bradfield Hall, Ithaca, NY 14853 USA
[6] Tech Univ Dresden, Inst Soil Sci & Site Ecol, Soil Resources & Land Use, PiennerStr 19, D-01737 Tharandt, Germany
[7] ILRI, POB 30709, Nairobi 00100, Kenya
[8] Makerere Univ, CAES, POB 7062, Kampala, Uganda
[9] Univ Sao Paulo, Dept Soil Sci, Ave Padua Dias,POB 9, Piracicaba, Brazil
[10] UNEP DTU Partnership, Copenhagen, Denmark
[11] Univ Catolica Santisima Concepcion, Dept Quim Ambiental, Concepcion, Chile
基金
美国国家科学基金会; 巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
Nitrification; Ammonification; Denitrification; N2O protonation; N-15 pool dilution method; Di-nitrogen (N-2); N2O EMISSIONS; CARBON; SORPTION; IMPACT; OXIDE; CO2;
D O I
10.1016/j.geoderma.2019.04.007
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Biochar has been reported to reduce emission of nitrous oxide (N2O) from soils, but the mechanisms responsible remain fragmentary. For example, it is unclear how biochar effects on N2O emissions are mediated through biochar effects on soil gross N turnover rates. Hence, we conducted an incubation study with three contrasting agricultural soils from Kenya (an Acrisol cultivated for 10-years (Acrisol10); an Acrisol cultivated for over 100-years (Acrisol100); a Ferralsol cultivated for over 100 years (Ferralsol)). The soils were amended with biochar at either 2% or 4% w/w. The N-15 pool dilution technique was used to quantify gross N mineralization and nitrification and microbial consumption of extractable N over a 20-day incubation period at 25 degrees C and 70% water holding capacity of the soil, accompanied by N2O emissions measurements. Direct measurements of N-2 emissions were conducted using the helium gas flow soil core method. N2O emissions varied across soils with higher emissions in Acrisols than in Ferralsols. Addition of 2% biochar reduced N2O emissions in all soils by 53 to 78% with no significant further reduction induced by addition at 4%. Biochar effects on soil nitrate concentrations were highly variable across soils, ranging from a reduction, no effect and an increase. Biochar addition stimulated gross N mineralization in Acrisol-10 and Acrisol-100 soils at both addition rates with no effect observed for the Ferralsol. In contrast, gross nitrification was stimulated in only one soil but only at a 4% application rate. Also, biochar effects on increased NH4+ immobilization and NO3- consumption strongly varied across the three investigated soils. The variable and bidirectional biochar effects on gross N turnover in conjunction with the unambiguous and consistent reduction of N2O emissions suggested that the inhibiting effect of biochar on soil N2O emission seemed to be decoupled from gross microbial N turnover processes. With biochar application, N-2 emissions were about an order of magnitude higher for Acrisol-10 soils compared to Acrisol-100 and Ferralsol-100 soils. Our N2O and N-2 flux data thus support an explanation of direct promotion of gross N2O reduction by biochar rather than effects on soil extractable N dynamics. Effects of biochar on soil extractable N and gross N turnover, however, might be highly variable across different soils as found here for three typical agricultural soils of Kenya.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 50 条
  • [31] Effect of the Number of Methyl Groups in DMOF on N2O Adsorption and N2O/N2 Separation
    Wang, Li
    Ye, Zhangmiao
    Wang, Mingxi
    Liu, Zhaozhuang
    Li, Jinping
    Yang, Jiangfeng
    INORGANIC CHEMISTRY, 2024, 63 (25) : 11501 - 11505
  • [32] Does influent COD/N ratio affect nitrogen removal and N2O emission in a novel biochar-sludge amended soil wastewater infiltration system (SWIS)?
    Zheng, Fanping
    Tan, Chaoquan
    Hou, Wanyuan
    Huang, Linli
    Pan, Jing
    Qi, Shiyue
    WATER SCIENCE AND TECHNOLOGY, 2018, 78 (02) : 347 - 357
  • [33] Effects of Microplastics on Soil N2O Emission and Nitrogen Transformations from Tropical Agricultural Soils
    Wang, Xiao-Tong
    Leng, You-Feng
    Wang, Jun-Jiao
    Huang, Xiao-Min
    Fu, Ya-Jun
    Fan, Chang-Hua
    Gao, Wen-Long
    Zhang, Wen
    Ning, Zi-Yu
    Chen, Miao
    Huanjing Kexue/Environmental Science, 2024, 45 (10): : 6139 - 6147
  • [34] N2O and N2 emissions from denitrification respond differently to temperature and nitrogen supply
    Lai, Thang V.
    Denton, Matthew D.
    JOURNAL OF SOILS AND SEDIMENTS, 2018, 18 (04) : 1548 - 1557
  • [35] PROPERTIES OF ABSORPTION X-RAY-SPECTRA OF NITROGEN IN N2, N2O AND NO MOLECULES
    GLUSKIN, ES
    SADOVSKI.AP
    MAZALOV, LN
    ZHURNAL STRUKTURNOI KHIMII, 1973, 14 (04): : 739 - 740
  • [36] N2O and N2 emissions from denitrification respond differently to temperature and nitrogen supply
    Thang V. Lai
    Matthew D. Denton
    Journal of Soils and Sediments, 2018, 18 : 1548 - 1557
  • [37] Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil
    Johannes Harter
    Ivan Guzman-Bustamante
    Stefanie Kuehfuss
    Reiner Ruser
    Reinhard Well
    Oliver Spott
    Andreas Kappler
    Sebastian Behrens
    Scientific Reports, 6
  • [38] Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil
    Harter, Johannes
    Guzman-Bustamante, Ivan
    Kuehfuss, Stefanie
    Ruser, Reiner
    Well, Reinhard
    Spott, Oliver
    Kappler, Andreas
    Behrens, Sebastian
    SCIENTIFIC REPORTS, 2016, 6
  • [39] The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system
    Domeignoz-Horta, Luiz A.
    Spor, Ayme
    Bru, David
    Breuil, Marie-Christine
    Bizouard, Florian
    Leonard, Joel
    Philippot, Laurent
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [40] QUENCHING OF VIBRATIONALLY-EXCITED N2 BY N2O
    WHITSON, ME
    COOK, GR
    MCNEAL, RJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (05): : 809 - 809