The Daxx/Atrx Complex Protects Tandem Repetitive Elements during DNA Hypomethylation by Promoting H3K9 Trimethylation

被引:111
作者
He, Quanyuan [1 ,2 ,3 ]
Kim, Hyeung [3 ]
Huang, Rui [1 ,2 ]
Lu, Weisi [1 ,2 ]
Tang, Mengfan [1 ,2 ]
Shi, Fengtao [3 ]
Yang, Dong [3 ]
Zhang, Xiya [1 ,2 ]
Huang, Junjiu [1 ,2 ,4 ,5 ]
Liu, Dan [3 ]
Zhou Songyang [1 ,2 ,3 ,4 ,5 ]
机构
[1] Sun Yat Sen Univ, Sch Life Sci, SYSU BCM Joint Ctr Biomed Sci, Minist Educ,Key Lab Gene Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Life Sci, Inst Hlth Aging Res, Guangzhou 510275, Guangdong, Peoples R China
[3] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA
[4] Sun Yat Sen Univ, Sch Life Sci, Key Lab Reprod Med Guangdong Prov, Guangzhou 510275, Guangdong, Peoples R China
[5] Sun Yat Sen Univ, Affiliated Hosp 1, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
EMBRYONIC STEM-CELLS; PERICENTRIC HETEROCHROMATIN; PREIMPLANTATION EMBRYOS; MAMMALIAN DEVELOPMENT; SELF-RENEWAL; GERM-CELLS; ATRX; METHYLATION; DAXX; DNMT1;
D O I
10.1016/j.stem.2015.07.022
中图分类号
Q813 [细胞工程];
学科分类号
摘要
In mammals, DNA methylation is essential for protecting repetitive sequences from aberrant transcription and recombination. In some developmental contexts (e.g., preimplantation embryos) DNA is hypomethylated but repetitive elements are not dysregulated, suggesting that alternative protection mechanisms exist. Here we explore the processes involved by investigating the role of the chromatin factors Daxx and Atrx. Using genome-wide binding and transcriptome analysis, we found that Daxx and Atrx have distinct chromatin-binding profiles and are co-enriched at tandem repetitive elements in wild-type mouse ESCs. Global DNA hypomethylation further promoted recruitment of the Daxx/Atrx complex to tandem repeat sequences, including retrotransposons and telomeres. Knockdown of Daxx/Atrx in cells with hypomethylated genomes exacerbated aberrant transcriptional de-repression of repeat elements and telomere dysfunction. Mechanistically, Daxx/Atrx-mediated repression seems to involve Suv39h recruitment and H3K9 trimethylation. Our data therefore suggest that Daxx and Atrx safeguard the genome by silencing repetitive elements when DNA methylation levels are low.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 46 条
  • [31] Predominant expression of H3K9 methyltransferases in prehypertrophic and hypertrophic chondrocytes during mouse growth plate cartilage development
    Ideno, Hisashi
    Shimada, Akemi
    Imaizumi, Kazuhiko
    Kimura, Hiroshi
    Abe, Masumi
    Nakashima, Kazuhisa
    Nifuji, Akira
    GENE EXPRESSION PATTERNS, 2013, 13 (3-4) : 84 - 90
  • [32] HTLV-1 bZIP factor suppresses the centromere protein B (CENP-B)-mediated trimethylation of histone H3K9 through the abrogation of DNA-binding ability of CENP-B
    Mukai, Risa
    Ohshima, Takayuki
    JOURNAL OF GENERAL VIROLOGY, 2015, 96 : 159 - 164
  • [33] The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation
    Ninova, Maria
    Godneeva, Baira
    Chen, Yung-Chia Ariel
    Luo, Yicheng
    Prakash, Sharan J.
    Jankovics, Ferenc
    Erdelyi, Miklos
    Aravin, Alexei A.
    Toth, Katalin Fejes
    MOLECULAR CELL, 2020, 77 (03) : 571 - +
  • [34] Loss of ATRX suppresses ATM dependent DNA damage repair by modulating H3K9me3 to enhance temozolomide sensitivity in glioma
    Han, Bo
    Cai, Jinquan
    Gao, Weida
    Meng, Xiangqi
    Gao, Fei
    Wu, Pengfei
    Duan, Chunbin
    Wang, Ruijia
    Dinislam, Magafurov
    Lin, Lin
    Kang, Chunsheng
    Jiang, Chuanlu
    CANCER LETTERS, 2018, 419 : 280 - 290
  • [35] Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability
    Zeller, Peter
    Padeken, Jan
    van Schendel, Robin
    Kalck, Veronique
    Tijsterman, Marcel
    Gasser, Susan M.
    NATURE GENETICS, 2016, 48 (11) : 1385 - 1395
  • [36] A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain
    Balan, Shabeesh
    Iwayama, Yoshimi
    Ohnishi, Tetsuo
    Fukuda, Mikiko
    Shirai, Atsuko
    Yamada, Ayumi
    Weirich, Sara
    Schuhmacher, Maren Kirstin
    Dileep, Kalarickal Vijayan
    Endo, Toshihiro
    Hisano, Yasuko
    Kotoshiba, Kaoru
    Toyota, Tomoko
    Otowa, Takeshi
    Kuwabara, Hitoshi
    Tochigi, Mamoru
    Watanabe, Akiko
    Ohba, Hisako
    Maekawa, Motoko
    Toyoshima, Manabu
    Sasaki, Tsukasa
    Nakamura, Kazuhiko
    Tsujii, Masatsugu
    Matsuzaki, Hideo
    Zhang, Kam Y. J.
    Jeltsch, Albert
    Shinkai, Yoichi
    Yoshikawa, Takeo
    MOLECULAR PSYCHIATRY, 2021, 26 (12) : 7550 - 7559
  • [37] H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells
    Krishanpal Karmodiya
    Arnaud R Krebs
    Mustapha Oulad-Abdelghani
    Hiroshi Kimura
    Laszlo Tora
    BMC Genomics, 13
  • [38] Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects
    Balan, Shabeesh
    Iwayama, Yoshimi
    Maekawa, Motoko
    Toyota, Tomoko
    Ohnishi, Tetsuo
    Toyoshima, Manabu
    Shimamoto, Chie
    Esaki, Kayoko
    Yamada, Kazuo
    Iwata, Yasuhide
    Suzuki, Katsuaki
    Ide, Masayuki
    Ota, Motonori
    Fukuchi, Satoshi
    Tsujii, Masatsugu
    Mori, Norio
    Shinkai, Yoichi
    Yoshikawa, Takeo
    MOLECULAR AUTISM, 2014, 5
  • [39] CTR9/PAF1c regulates molecular lineage identity, histone H3K36 trimethylation and genomic imprinting during preimplantation development
    Zhang, Kun
    Haversat, Jocelyn M.
    Mager, Jesse
    DEVELOPMENTAL BIOLOGY, 2013, 383 (01) : 15 - 27
  • [40] H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication
    Wu, Rentian
    Wang, Zhiquan
    Zhang, Honglian
    Gan, Haiyun
    Zhang, Zhiguo
    NUCLEIC ACIDS RESEARCH, 2017, 45 (01) : 169 - 180