Two tests for heteroscedasticity in nonparametric regression

被引:7
|
作者
Francisco-Fernandez, Mario [1 ]
Vilar-Fernandez, Juan M. [1 ]
机构
[1] Univ A Coruna, Fac Informat, Corunna 15071, Spain
关键词
Homoscedasticity; Local polynomial estimator; Volatility function; CORRELATED ERRORS; VARIANCE FUNCTION; CONSISTENT TEST; FORM;
D O I
10.1007/s00180-008-0110-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, two new tests for heteroscedasticity in nonparametric regression are presented and compared. The first of these tests consists in first estimating nonparametrically the unknown conditional variance function and then using a classical least-squares test for a general linear model to test whether this function is a constant. The second test is based on using an overall distance between a nonparametric estimator of the conditional variance function and a parametric estimator of the variance of the model under the assumption of homoscedasticity. A bootstrap algorithm is used to approximate the distribution of this test statistic. Extended versions of both procedures in two directions, first, in the context of dependent data, and second, in the case of testing if the variance function is a polynomial of a certain degree, are also described. A broad simulation study is carried out to illustrate the finite sample performance of both tests when the observations are independent and when they are dependent.
引用
收藏
页码:145 / 163
页数:19
相关论文
共 50 条
  • [1] Two tests for heteroscedasticity in nonparametric regression
    Mario Francisco-Fernández
    Juan M. Vilar-Fernández
    Computational Statistics, 2009, 24 : 145 - 163
  • [2] A nonparametric hypothesis test for heteroscedasticity in multiple regression
    Zambom, Adriano Z.
    Kim, Seonjin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 425 - 441
  • [3] Testing heteroscedasticity in nonlinear and nonparametric regressions
    Zheng, Xu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (02): : 282 - 300
  • [4] TESTING HETEROSCEDASTICITY FOR REGRESSION MODELS BASED ON PROJECTIONS
    Tan, Falong
    Jiang, Xuejun
    Guo, Xu
    Zhu, Lixing
    STATISTICA SINICA, 2021, 31 (02) : 625 - 646
  • [5] A nonparametric hypothesis test for heteroscedasticity
    Kim, Seonjin
    Zambom, Adriano Z.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (04) : 752 - 767
  • [6] Tests for the equality of conditional variance functions in nonparametric regression
    Carlos Pardo-Fernandez, Juan
    Dolores Jimenez-Gamero, Maria
    El Ghouch, Anouar
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 1826 - 1851
  • [7] Nonparametric Conditional Risk Mapping Under Heteroscedasticity
    Fernandez-Casal, Ruben
    Castillo-Paez, Sergio
    Francisco-Fernandez, Mario
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024, 29 (01) : 56 - 72
  • [8] Goodness-of-fit tests for the error distribution in nonparametric regression
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (08) : 1942 - 1951
  • [9] Testing for heteroscedasticity in nonlinear regression models
    Lin, JG
    Wei, BC
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (01) : 171 - 192
  • [10] Accounting for uncertainty in heteroscedasticity in nonlinear regression
    Lim, Changwon
    Sen, Pranab K.
    Peddada, Shyamal D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (05) : 1047 - 1062