Parametric study of a thin piezoelectric cantilever for energy harvesting applications

被引:3
|
作者
Hoang, T. [1 ,2 ]
Poulin-Vittrant, G. [2 ]
Ferin, G. [1 ]
Levassort, F. [2 ]
Bantignies, C. [1 ]
Nguyen-Dinh, A. [1 ]
Bavencoffe, M. [2 ]
机构
[1] Vermon SA, Adv Res Dept, 180 Rue Gen Renault, F-37200 Tours, France
[2] Univ Tours, CNRS, INSA CVL, GREMAN UMR7347, Blois, France
基金
欧盟地平线“2020”;
关键词
Energy harvesting; parametric study; piezoelectricity; finite element model; electrical impedance; functional characterisation;
D O I
10.1080/17436753.2017.1403538
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nowadays, bimorph piezoelectric cantilevers are commonly used in ambient vibrational piezoelectric energy harvesting. They are constituted of two thin layers of piezoelectric material separated by an inner shim material. To help the design process of these energy harvesting devices, analytical and numerical models have been developed. This work presents a parametric study to determine the effective coefficients of a thinned piezoelectric layer. To this aim, a one-dimensional analytical model and a three-dimensional finite element (FE) model are investigated: a thinned layer of PZT material in free mechanical boundary conditions is considered. The one-dimensional analytical admittance model allows the determination of the elastic, dielectric and piezoelectric coefficients (s(11)(E), epsilon(T)(33), d(31)) of the piezoelectric layer. Then, in order to determine the influence of all coefficients of the compliance, dielectric and piezoelectric tensors, a FE model is investigated.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 50 条
  • [31] Right-angle piezoelectric cantilever with improved energy harvesting efficiency
    Xu, Jia Wen
    Shao, Wei Wei
    Kong, Fan Rang
    Feng, Zhi Hua
    APPLIED PHYSICS LETTERS, 2010, 96 (15)
  • [32] Piezoelectric energy harvesting systems for biomedical applications
    Panda, Swati
    Hajra, Sugato
    Mistewicz, Krystian
    In-na, Pichaya
    Sahu, Manisha
    Rajaitha, P. Mary
    Kim, Hoe Joon
    NANO ENERGY, 2022, 100
  • [33] Piezoelectric Bender Transducers for Energy Harvesting Applications
    Messineo, Antonio
    Alaimo, Andrea
    Denaro, Mario
    Ticali, Dario
    2011 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY ENGINEERING (ICAEE), 2012, 14 : 39 - 44
  • [34] Plucked piezoelectric bimorphs for energy harvesting applications
    Pozzi, Michele
    Zhu, Meiling
    SMART SENSORS, ACTUATORS, AND MEMS V, 2011, 8066
  • [35] Shape Improvement for Piezoelectric Energy Harvesting Applications
    Ben Ayed, Sameh
    Najar, Fehmi
    Abdelkefi, Abdessattar
    2009 3RD INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS (SCS 2009), 2009, : 448 - 453
  • [36] Effect of Parametric Uncertainties on the Performance of a Piezoelectric Energy Harvesting Device
    de Godoy, Tatiane C.
    Trindade, Marcelo A.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2012, 34 : 552 - 560
  • [37] The Piezoelectric Phenomenon in Energy Harvesting Scenarios: A Theoretical Study of Viable Applications in Unbalanced Rotor Systems
    Dannier, Adolfo
    Brando, Gianluca
    Ruggiero, Francesca Nikita
    ENERGIES, 2019, 12 (04)
  • [38] Optimization Study on Piezoelectric Energy Harvesting Interface Circuit
    Yu, Ruojun
    Shu, Shengwen
    Zhang, Bizhen
    Jin, Bingyan
    Lu, Yongling
    Wang, Zhen
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 1049 - 1053
  • [39] Power Optimization by Mass Tuning for MEMS Piezoelectric Cantilever Vibration Energy Harvesting
    Jia, Yu
    Seshia, Ashwin A.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2016, 25 (01) : 108 - 117
  • [40] Parametric Study of Zigzag Microstructure for Vibrational Energy Harvesting
    Karami, M. Amin
    Inman, Daniel J.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2012, 21 (01) : 145 - 160