Kernel energy method applied to vesicular stomatitis virus nucleoprotein

被引:29
作者
Huang, Lulu [1 ]
Massa, Lou [2 ,3 ]
Karle, Jerome [1 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] CUNY, Dept Chem, Hunter Coll, New York, NY 10065 USA
[3] CUNY, Grad Ctr, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
Hartree-Fock; KEM; Moller-Plesset; quantum mechanics; MOLECULAR-ORBITAL METHODS; BASIS-SET; RNA; ELEMENTS; ATOMS;
D O I
10.1073/pnas.0811959106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The kernel energy method (KEM) is applied to the vesicular stomatitis virus (VSV) nucleoprotein (PDB ID code 2QVJ). The calculations employ atomic coordinates from the crystal structure at 2.8-angstrom resolution, except for the hydrogen atoms, whose positions were modeled by using the computer program HYPERCHEM. The calculated KEM ab initio limited basis Hartree-Fock energy for the full 33,175 atom molecule (including hydrogen atoms) is obtained. In the KEM, a full biological molecule is represented by smaller "kernels'' of atoms, greatly simplifying the calculations. Collections of kernels are well suited for parallel computation. VSV consists of five similar chains, and we obtain the energy of each chain. Interchain hydrogen bonds contribute to the interaction energy between the chains. These hydrogen bond energies are calculated in Hartree-Fock (HF) and Moller-Plesset perturbation theory to second order (MP2) approximations by using 6-31G** basis orbitals. The correlation energy, included in MP2, is a significant factor in the interchain hydrogen bond energies.
引用
收藏
页码:1731 / 1736
页数:6
相关论文
共 19 条
[1]  
[Anonymous], SILICO BIOL
[2]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .9. EXTENDED GAUSSIAN-TYPE BASIS FOR MOLECULAR-ORBITAL STUDIES OF ORGANIC MOLECULES [J].
DITCHFIELD, R ;
HEHRE, WJ ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (02) :724-+
[3]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .23. A POLARIZATION-TYPE BASIS SET FOR 2ND-ROW ELEMENTS [J].
FRANCL, MM ;
PIETRO, WJ ;
HEHRE, WJ ;
BINKLEY, JS ;
GORDON, MS ;
DEFREES, DJ ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1982, 77 (07) :3654-3665
[4]   MP2 ENERGY EVALUATION BY DIRECT METHODS [J].
HEADGORDON, M ;
POPLE, JA ;
FRISCH, MJ .
CHEMICAL PHYSICS LETTERS, 1988, 153 (06) :503-506
[5]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .I. USE OF GAUSSIAN EXPANSIONS OF SLATER-TYPE ATOMIC ORBITALS [J].
HEHRE, WJ ;
STEWART, RF ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (06) :2657-+
[6]   The Kernel Energy Method: Application to a tRNA [J].
Huang, L ;
Massa, L ;
Karle, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (05) :1233-1237
[7]   Kernel energy method: Application to insulin [J].
Huang, L ;
Massa, L ;
Karle, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) :12690-12693
[8]   Kernel energy method: Application to DNA [J].
Huang, LL ;
Massa, L ;
Karle, J .
BIOCHEMISTRY, 2005, 44 (50) :16747-16752
[9]   Kernel energy method: Basis functions and quantum methods [J].
Huang, LL ;
Massa, L ;
Karle, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (02) :447-457
[10]  
Huang LL, 2005, INT J QUANTUM CHEM, V103, P808, DOI [10.1002/qua.20542, 10.1002/qua.10542]