A fluid-structure interaction model with interior damping and delay in the structure

被引:4
|
作者
Peralta, Gilbert [1 ]
机构
[1] Univ Philippines Baguio, Dept Math & Comp Sci, Governor Pack Rd, Baguio 2600, Philippines
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 01期
关键词
Fluid-structure model; Feedback delay; Stability; Generalized Lax-Milgram method; WEAK SOLUTIONS; PDE SYSTEM; STABILITY; BOUNDARY; RATES; DECAY;
D O I
10.1007/s00033-015-0611-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A coupled system of partial differential equations modeling the interaction of a fluid and a structure with delay in the feedback is studied. The model describes the dynamics of an elastic body immersed in a fluid that is contained in a vessel, whose boundary is made of a solid wall. The fluid component is modeled by the linearized Navier-Stokes equation, while the solid component is given by the wave equation neglecting transverse elastic force. Spectral properties and exponential or strong stability of the interaction model under appropriate conditions on the damping factor, delay factor and the delay parameter are established using a generalized Lax-Milgram method.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Space-mapping in fluid-structure interaction problems
    Scholcz, T. P.
    van Zuijlen, A. H.
    Bijl, H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 281 : 162 - 183
  • [22] A complementary study of analytical and computational fluid-structure interaction
    Andre, Michael
    Bletzinger, Kai-Uwe
    Wuechner, Roland
    COMPUTATIONAL MECHANICS, 2015, 55 (02) : 345 - 357
  • [23] Kinematic splitting algorithm for fluid-structure interaction in hemodynamics
    Lukacova-Medvid'ova, M.
    Rusnakova, G.
    Hundertmark-Zauskova, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 265 : 83 - 106
  • [24] Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds
    Valdes-Vazquez, Jesus G.
    Garcia-Soto, Adrian D.
    Hernandez-Martinez, Alejandro
    Nava, Jose L.
    WIND AND STRUCTURES, 2020, 31 (06) : 533 - 548
  • [25] FEEDBACK STABILIZATION OF A FLUID-STRUCTURE MODEL
    Raymond, Jean-Pierre
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) : 5398 - 5443
  • [26] On stability and relaxation techniques for partitioned fluid-structure interaction simulations
    Lorentzon, Johan
    Revstedt, Johan
    ENGINEERING REPORTS, 2022, 4 (10)
  • [27] Interface feedback control stabilization of a nonlinear fluid-structure interaction
    Lasiecka, Irena
    Lu, Yongjin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1449 - 1460
  • [28] A Multirate Approach for Fluid-Structure Interaction Computation with Decoupled Methods
    Zhang, Lian
    Cai, Mingchao
    Mu, Mo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (04) : 1014 - 1031
  • [29] Stability Evaluation of a Simplified Reclaimer Using Fluid-Structure Interaction
    Januario, Joao Rodolfo
    Landre Junior, Janes
    Maia, Cristiana Brasil
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [30] Experimental study of the steady fluid-structure interaction of flexible hydrofoils
    Zarruk, Gustavo A.
    Brandner, Paul A.
    Pearce, Bryce W.
    Phillips, Andrew W.
    JOURNAL OF FLUIDS AND STRUCTURES, 2014, 51 : 326 - 343