A fluid-structure interaction model with interior damping and delay in the structure

被引:4
|
作者
Peralta, Gilbert [1 ]
机构
[1] Univ Philippines Baguio, Dept Math & Comp Sci, Governor Pack Rd, Baguio 2600, Philippines
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 01期
关键词
Fluid-structure model; Feedback delay; Stability; Generalized Lax-Milgram method; WEAK SOLUTIONS; PDE SYSTEM; STABILITY; BOUNDARY; RATES; DECAY;
D O I
10.1007/s00033-015-0611-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A coupled system of partial differential equations modeling the interaction of a fluid and a structure with delay in the feedback is studied. The model describes the dynamics of an elastic body immersed in a fluid that is contained in a vessel, whose boundary is made of a solid wall. The fluid component is modeled by the linearized Navier-Stokes equation, while the solid component is given by the wave equation neglecting transverse elastic force. Spectral properties and exponential or strong stability of the interaction model under appropriate conditions on the damping factor, delay factor and the delay parameter are established using a generalized Lax-Milgram method.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A fluid–structure interaction model with interior damping and delay in the structure
    Gilbert Peralta
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [2] Analysis of a nonlinear fluid-structure interaction model with mechanical dissipation and delay
    Peralta, Gilbert
    Kunisch, Karl
    NONLINEARITY, 2019, 32 (12) : 5110 - 5149
  • [3] Strong stability for a fluid-structure interaction model
    Grobbelaar-Van Dalsen, Marie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (11) : 1452 - 1466
  • [4] A new approach to the stabilization of a fluid-structure interaction model
    Grobbelaar-Van Dalsen, Marie
    APPLICABLE ANALYSIS, 2009, 88 (07) : 1053 - 1065
  • [5] Gevrey Regularity for A Fluid-Structure Interaction Model
    Avalos, George
    Mcknight, Dylan
    Mcknight, Sara
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 205 (01)
  • [6] Lp-theory for a fluid-structure interaction model
    Denk, Robert
    Saal, Juergen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [7] Smoothed-Interface SPH Model for Multiphase Fluid-Structure Interaction
    Guo, Chaoyang
    Zhang, Huashan
    Qian, Zhihao
    Liu, Moubin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 518
  • [8] Model order reduction for bifurcating phenomena in fluid-structure interaction problems
    Khamlich, Moaad
    Pichi, Federico
    Rozza, Gianluigi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (10) : 1611 - 1640
  • [9] A REDUCED BASIS MODEL WITH PARAMETRIC COUPLING FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    Lassila, Toni
    Quarteroni, Alfio
    Rozza, Gianluigi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A1187 - A1213
  • [10] Performance of partitioned procedures in fluid-structure interaction
    Degroote, Joris
    Haelterman, Robby
    Annerel, Sebastiaan
    Bruggeman, Peter
    Vierendeels, Jan
    COMPUTERS & STRUCTURES, 2010, 88 (7-8) : 446 - 457