Fundamental limits to graphene plasmonics

被引:456
作者
Ni, G. X. [1 ,2 ]
McLeod, A. S. [1 ,2 ]
Sun, Z. [2 ]
Wang, L. [3 ]
Xiong, L. [1 ,2 ]
Post, K. W. [2 ]
Sunku, S. S. [1 ,4 ]
Jiang, B-Y [2 ]
Hone, J. [3 ]
Dean, C. R. [1 ]
Fogler, M. M. [2 ]
Basov, D. N. [1 ,2 ]
机构
[1] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
关键词
BORON-NITRIDE; POLARITONS; SUPERLATTICES; CONDUCTIVITY; LAYER;
D O I
10.1038/s41586-018-0136-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasmon polaritons are hybrid excitations of light and mobile electrons that can confine the energy of long-wavelength radiation at the nanoscale. Plasmon polaritons may enable many enigmatic quantum effects, including lasing(1), topological protection(2,3) and dipole-forbidden absorption(4). A necessary condition for realizing such phenomena is a long plasmonic lifetime, which is notoriously difficult to achieve for highly confined modes(5). Plasmon polaritons in graphene-hybrids of Dirac quasiparticles and infrared photons-provide a platform for exploring light-matter interaction at the nanoscale(6,7). However, plasmonic dissipation in graphene is substantial(8) and its fundamental limits remain undetermined. Here we use nanometre-scale infrared imaging to investigate propagating plasmon polaritons in high-mobility encapsulated graphene at cryogenic temperatures. In this regime, the propagation of plasmon polaritons is primarily restricted by the dielectric losses of the encapsulated layers, with a minor contribution from electron-phonon interactions. At liquid-nitrogen temperatures, the intrinsic plasmonic propagation length can exceed 10 micrometres, or 50 plasmonic wavelengths, thus setting a record for highly confined and tunable polariton modes. Our nanoscale imaging results reveal the physics of plasmonic dissipation and will be instrumental in mitigating such losses in heterostructure engineering applications.
引用
收藏
页码:530 / +
页数:21
相关论文
共 47 条
  • [1] Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns
    Alonso-Gonzalez, P.
    Nikitin, A. Y.
    Golmar, F.
    Centeno, A.
    Pesquera, A.
    Velez, S.
    Chen, J.
    Navickaite, G.
    Koppens, F.
    Zurutuza, A.
    Casanova, F.
    Hueso, L. E.
    Hillenbrand, R.
    [J]. SCIENCE, 2014, 344 (6190) : 1369 - 1373
  • [2] Novel effects of strains in graphene and other two dimensional materials
    Amorim, B.
    Cortijo, A.
    de Juan, F.
    Grushine, A. G.
    Guinea, F.
    Gutierrez-Rubio, A.
    Ochoa, H.
    Parente, V.
    Roldan, R.
    San-Jose, P.
    Schiefele, J.
    Sturla, M.
    Vozmediano, M. A. H.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 617 : 1 - 54
  • [3] Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids
    Atkin, Joanna M.
    Berweger, Samuel
    Jones, Andrew C.
    Raschke, Markus B.
    [J]. ADVANCES IN PHYSICS, 2012, 61 (06) : 745 - 842
  • [4] Negative local resistance caused by viscous electron backflow in graphene
    Bandurin, D. A.
    Torre, I.
    Kumar, R. Krishna
    Ben Shalom, M.
    Tomadin, A.
    Principi, A.
    Auton, G. H.
    Khestanova, E.
    Novoselov, K. S.
    Grigorieva, I. V.
    Ponomarenko, L. A.
    Geim, A. K.
    Polini, M.
    [J]. SCIENCE, 2016, 351 (6277) : 1055 - 1058
  • [5] Interplay of Coulomb and electron-phonon interactions in graphene
    Basko, D. M.
    Aleiner, I. L.
    [J]. PHYSICAL REVIEW B, 2008, 77 (04):
  • [6] Polaritons in van der Waals materials
    Basov, D. N.
    Fogler, M. M.
    Garcia de Abajo, F. J.
    [J]. SCIENCE, 2016, 354 (6309)
  • [7] Low-Loss Plasmonic Metamaterials
    Boltasseva, Alexandra
    Atwater, Harry A.
    [J]. SCIENCE, 2011, 331 (6015) : 290 - 291
  • [8] Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons
    Caldwell, Joshua D.
    Lindsay, Lucas
    Giannini, Vincenzo
    Vurgaftman, Igor
    Reinecke, Thomas L.
    Maier, Stefan A.
    Glembocki, Orest J.
    [J]. NANOPHOTONICS, 2015, 4 (01) : 44 - 68
  • [9] Unconventional superconductivity in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Fang, Shiang
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 43 - +
  • [10] Optical nano-imaging of gate-tunable graphene plasmons
    Chen, Jianing
    Badioli, Michela
    Alonso-Gonzalez, Pablo
    Thongrattanasiri, Sukosin
    Huth, Florian
    Osmond, Johann
    Spasenovic, Marko
    Centeno, Alba
    Pesquera, Amaia
    Godignon, Philippe
    Zurutuza Elorza, Amaia
    Camara, Nicolas
    Javier Garcia de Abajo, F.
    Hillenbrand, Rainer
    Koppens, Frank H. L.
    [J]. NATURE, 2012, 487 (7405) : 77 - 81