Asymptotic profile of positive solutions of Lane-Emden problems in dimension two

被引:22
作者
De Marchis, Francesca [1 ]
Ianni, Isabella [2 ]
Pacella, Filomena [1 ]
机构
[1] Univ Roma Sapienza, Ple Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Campania Luigi Vanvitelli, Vle Lincoln 5, I-81100 Caserta, Italy
关键词
Semilinear elliptic equations; superlinear elliptic boundary value problems; asymptotic analysis; concentration of solutions; positive solutions; ELLIPTIC PROBLEM; LARGE EXPONENT; BEHAVIOR;
D O I
10.1007/s11784-016-0386-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider families up of solutions to the problem {-Delta u = u(p) in Omega u > 0 in Omega, (epsilon(p)) u = 0 on partial derivative Omega where p > 1 and Omega is a smooth bounded domain of R-2. Under the condition p integral(Omega) vertical bar del u(p)|(2) dx -> beta is an element of R as p -> +infinity (F) we give a complete description of the asymptotic behavior of u(p) as p -> +infinity.
引用
收藏
页码:889 / 916
页数:28
相关论文
共 14 条
[1]  
Adimurthi Grossi M., 2003, P AMS, V132, P1013
[2]   Multiple Blow-Up Solutions for the Liouville Equation with Singular Data [J].
D'Aprile, Teresa .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (08) :1409-1436
[3]   Estimates for Green function and Poisson kernels of higher-order Dirichlet boundary value problems [J].
Dall'Acqua, A ;
Sweers, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :466-487
[4]  
De Marchis F., 2016, ANN MAT PUR APPL, V195, P357
[5]  
De Marchis F., LONDON MATH IN PRESS
[6]   Asymptotic analysis and sign-changing bubble towers for Lane-Emden problems [J].
De Marchis, Francesca ;
Ianni, Isabella ;
Pacella, Filomena .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (08) :2037-2068
[7]   Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent [J].
Esposito, Pierpaolo ;
Musso, Monica ;
Pistoia, Angela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (01) :29-68
[8]   Lane-Emden problems: Asymptotic behavior of low energy nodal solutions [J].
Grossi, Massimo ;
Grumiau, Christopher ;
Pacella, Filomena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01) :121-140
[9]   Convergence for a Liouville equation [J].
Ma, L ;
Wei, JC .
COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (03) :506-514
[10]  
POKHOZHAEV SI, 1965, DOKL AKAD NAUK SSSR+, V165, P36