Parameter Space for the Architecture of FFT-Based Montgomery Modular Multiplication

被引:18
作者
Chen, Donald Donglong [1 ]
Yao, Gavin Xiaoxu [1 ]
Cheung, Ray C. C. [1 ]
Pao, Derek [1 ]
Koc, Cetin Kaya [2 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
关键词
Schonhage-Strassen algorithm; number theoretic transform (NTT); Montgomery modular multiplication; parallel computation; field-programmable gate array (FPGA); EXPONENTIATION; CRYPTOSYSTEMS; TRANSFORM; ALGORITHM;
D O I
10.1109/TC.2015.2417553
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Modular multiplication is the core operation in public-key cryptographic algorithms such as RSA and the Diffie-Hellman algorithm. The efficiency of the modular multiplier plays a crucial role in the performance of these cryptographic methods. In this paper, improvements to FFT-based Montgomery Modular Multiplication (FFTM3) using carry-save arithmetic and pre-computation techniques are presented. Moreover, pseudo-Fermat number transform is used to enrich the supported operand sizes for the FFTM3. The asymptotic complexity of our method is O(l log l log log l), which is the same as the Schonhage-Strassen multiplication algorithm (SSA). A systematic procedure to select suitable parameter set for the FFTM3 is provided. Prototypes of the improved FFTM3 multiplier with appropriate parameter sets are implemented on Xilinx Virtex-6 FPGA. Our method can perform 3,100-bit and 4,124-bit modular multiplications in 6.74 and 7.78 mu s, respectively. It offers better computation latency and area-latency product compared to the state-of-the-art methods for operand size of 3,072-bit and above.
引用
收藏
页码:147 / 160
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 2012, NIST SPEC PUBL 1
[2]  
Bernstein D.J, 2001, Multidigit multiplication for mathematicians
[3]   An efficient pipelined FFT architecture [J].
Chang, YN ;
Parhi, KK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2003, 50 (06) :322-325
[4]   High-Speed Polynomial Multiplication Architecture for Ring-LWE and SHE Cryptosystems [J].
Chen, Donald Donglong ;
Mentes, Nele ;
Vercauteren, Frederik ;
Roy, Sujoy Sinha ;
Cheung, Ray C. C. ;
Pao, Derek ;
Verbauwhede, Ingrid .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2015, 62 (01) :157-166
[5]  
Chow G. C. T., 2010, Proceedings 2010 International Conference on Field Programmable Logic and Applications (FPL 2010), P434, DOI 10.1109/FPL.2010.89
[6]  
Cook SA, 1966, THESIS
[7]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[8]  
CREUTZBURG R, 1986, MATH COMPUT, V47, P693, DOI 10.1090/S0025-5718-1986-0856713-1
[9]  
David JP, 2007, IEEE T COMPUT, V56, P1308, DOI [10.1109/TC.2007.1084, 10.1109/TC.2007.1084.]
[10]  
de Dinechin F., 2010, Proceedings 2010 International Conference on Field Programmable Logic and Applications (FPL 2010), P422, DOI 10.1109/FPL.2010.87