Graphene reinforced metal and ceramic matrix composites: a review

被引:551
作者
Nieto, Andy [1 ]
Bisht, Ankita [2 ]
Lahiri, Debrupa [2 ]
Zhang, Cheng [3 ]
Agarwal, Arvind [3 ]
机构
[1] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA
[2] Indian Inst Technol Roorkee, Dept Met & Mat Engn, Roorkee, Uttar Pradesh, India
[3] Florida Int Univ, Dept Mech & Mat Engn, Plasma Forming Lab, Miami, FL 33174 USA
关键词
Graphene; metal; ceramic; matrix; composite; strengthening; toughening; dispersion; ENHANCED MECHANICAL-PROPERTIES; IN-VITRO BIOCOMPATIBILITY; FRACTURE-TOUGHNESS; TRIBOLOGICAL PROPERTIES; CARBON NANOTUBES; MULTILAYER GRAPHENE; EPITAXIAL GRAPHENE; ELECTRIC-FIELD; OSTEOBLAST ADHESION; TETRAGONAL ZIRCONIA;
D O I
10.1080/09506608.2016.1219481
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This review critically examines the current state of graphene reinforced metal (GNP-MMC) and ceramic matrix composites (GNP-CMC). The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics. This review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements. The review discusses processing techniques, effects of graphene on the mechanical behaviour of GNP-MMCs and GNP-CMCs, including early studies on the tribological performance of graphenereinforced composites, where graphene has shown signs of serving as a protective and lubricious phase. Additionally, the unique functional properties endowed by graphene to GNP-MMCs and GNP-CMCs, such as enhanced thermal/electrical conductivity, improved oxidation resistance, and excellent biocompatibility are overviewed. Directions for future research endeavours that are needed to advance the field and to propel technological maturation are provided.
引用
收藏
页码:241 / 302
页数:62
相关论文
共 214 条
[51]   Synthesis of nickel nanosheet/graphene composites for biosensor applications [J].
Guo, Wenlong ;
Li, Hongji ;
Li, Mingji ;
Dai, Wei ;
Shao, Zhou ;
Wu, Xiaoguo ;
Yang, Baohe .
CARBON, 2014, 79 :636-645
[52]   Wear behavior of graphene/alumina composite [J].
Gutierrez-Gonzalez, C. F. ;
Smirnov, A. ;
Centeno, A. ;
Fernandez, A. ;
Alonso, B. ;
Rocha, V. G. ;
Torrecillas, R. ;
Zurutuza, A. ;
Bartolome, J. F. .
CERAMICS INTERNATIONAL, 2015, 41 (06) :7434-7438
[53]   Preparation and Consolidation of Alumina/Graphene Composite Powders [J].
He, Ting ;
Li, Jianlin ;
Wang, Lianjun ;
Zhu, Juanjuan ;
Jiang, Wan .
MATERIALS TRANSACTIONS, 2009, 50 (04) :749-751
[54]   Dynamic ripples in single layer graphene [J].
He, Y. Z. ;
Li, H. ;
Si, P. C. ;
Li, Y. F. ;
Yu, H. Q. ;
Zhang, X. Q. ;
Ding, F. ;
Liew, K. M. ;
Liu, X. F. .
APPLIED PHYSICS LETTERS, 2011, 98 (06)
[55]   Grain growth of nanocrystalline Fe-Al alloys produced by cryomilling in liquid argon and nitrogen [J].
Huang, B ;
Perez, RJ ;
Lavernia, EJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 255 (1-2) :124-132
[56]   Bottom-up Growth of Epitaxial Graphene on 6H-SiC(0001) [J].
Huang, Han ;
Chen, Wei ;
Chen, Shi ;
Wee, Andrew Thye Shen .
ACS NANO, 2008, 2 (12) :2513-2518
[57]   Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications [J].
Huang, Xiao ;
Yin, Zongyou ;
Wu, Shixin ;
Qi, Xiaoying ;
He, Qiyuan ;
Zhang, Qichun ;
Yan, Qingyu ;
Boey, Freddy ;
Zhang, Hua .
SMALL, 2011, 7 (14) :1876-1902
[58]   Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study [J].
Hupalo, M. ;
Conrad, E. H. ;
Tringides, M. C. .
PHYSICAL REVIEW B, 2009, 80 (04)
[59]   Quartz-crystal microbalance for in situ monitoring of laser cleaning of carbon nanotubes [J].
Hurst, Katherine E. ;
Van Der Geest, Abram ;
Lusk, Mark ;
Mansfield, Elisabeth ;
Lehman, John H. .
CARBON, 2010, 48 (09) :2521-2525
[60]  
Hussain, 2014, ADV FOOD TECHNOLOGY, V1, P5, DOI [10.17140/AFTNSOJ-1-102, DOI 10.17140/AFTNSOJ-1-102]