Hydrological Processes in the Huaihe River Basin, China: Seasonal Variations, Causes and Implications

被引:8
|
作者
Sun Peng [1 ,2 ,3 ]
Sun Yuyan [1 ,4 ]
Zhang Qiang [4 ,5 ,6 ]
Yao Rui [1 ,2 ]
机构
[1] Anhui Normal Univ, Coll Geog & Tourism, Wuhu 241002, Peoples R China
[2] Anhui Key Lab Nat Disaster Proc & Prevent, Wuhu 241002, Peoples R China
[3] Water Resources Res Inst Anhui Prov & Huaihe Rive, Key Lab Water Conservancy & Water Resources Anhui, Bengbu 233000, Peoples R China
[4] Beijing Normal Univ, Minist Educ, Key Lab Environm Change & Nat Disaster, Beijing 100875, Peoples R China
[5] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[6] Beijing Normal Univ, Acad Disaster Reduct & Emergency Management, Fac Geog Sci, Beijing 100875, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
streamflow; trend; periodicity; abrupt behavior; climate indices; Huaihe River Basin; China; YANGTZE-RIVER; CLIMATE-CHANGE; FLOW REGIMES; MANN-KENDALL; PRECIPITATION; VARIABILITY; ENSO; TREND; STREAMFLOW; PATTERNS;
D O I
10.1007/s11769-018-0969-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding streamflow changes in terms of trends and periodicities and relevant causes is the first step into scientific management of water resources in a changing environment. In this study, monthly streamflow variations were analyzed using Modified Mann-Kendall (MM-K) trend test and Continuous Wavelet Transform (CWT) methods at 9 hydrological stations in the Huaihe River Basin. It was found that: 1) streamflow mainly occurs during May to September, accounting for 70.4% of the annual total streamflowamount with Cv values between 0.16-0.85 and extremum ratio values between 1.70-23.90; 2) decreased streamflow can be observed in the Huaihe River Basin and significant decreased streamflow can be detected during April and May, which should be the results of precipitation change and increased irrigation demand; 3) significant periods of 2-4 yr were detected during the 1960s, the 1980s and the 2000s. Different periods were found at stations concentrated within certain regions implying periods of streamflow were caused by different influencing factors for specific regions; 4) Pacific Decadal Oscillation (PDO) has the most significant impacts on monthly streamflow mainly during June. Besides, Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO) and the Nio3.4 Sea Surface Temperature (Nio3.4) have impacts on monthly streamflow with three months lags, and was less significant in time lag of six months. Identification of critical climatic factors having impacts on streamflow changes can help to predict monthly streamflow changes using climatic factors as explanatory variables. These findings were well corroborated by results concerning impacts of El Nino-Southern Oscillation (ENSO) regimes on precipitation events across the Huaihe River Basin. The results of this study can provide theoretical background for basin-scale management of water resources and agricultural irrigation.
引用
收藏
页码:636 / 653
页数:18
相关论文
共 50 条
  • [41] Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China
    Yu, Zhongbo
    Gu, Huanghe
    Wang, Jigan
    Xia, Jun
    Lu, Baohong
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (01) : 1 - 16
  • [42] Impacts of climate change on hydrological droughts at basin scale: A case study of the Weihe River Basin, China
    Zhao, Panpan
    Lu, Haishen
    Yang, Huicai
    Wang, Wenchuan
    Fu, Guobin
    QUATERNARY INTERNATIONAL, 2019, 513 : 37 - 46
  • [43] Temporal and Spatial Variations of Hydrological Processes on the Landscape Zone Scale in an Alpine Cold Region (Mafengou River Basin, China): An Update
    Yang, Yonggang
    Li, Bin
    WATER, 2017, 9 (08):
  • [44] Changes in Annual, Seasonal and Monthly Climate and Its Impacts on Runoff in the Hutuo River Basin, China
    Xu, Fei
    Jia, Yangwen
    Niu, Cunwen
    Liu, Jiajia
    Hao, Chunfeng
    WATER, 2018, 10 (03)
  • [45] Application of a Coupled Land Surface-Hydrological Model to Flood Simulation in the Huaihe River Basin of China
    LI Min
    LIN Zhao-Hui
    YANG Chuan-Guo
    SHAO Quan-Xi
    AtmosphericandOceanicScienceLetters, 2014, 7 (06) : 493 - 498
  • [46] Spatiotemporal Variation Characteristics of Precipitation in the Huaihe River Basin, China, as a Result of Climate Change
    Xu, Dan
    Liu, Dongdong
    Yan, Zhihong
    Ren, Shuai
    Xu, Qian
    WATER, 2023, 15 (01)
  • [47] Application of a Coupled Land Surface-Hydrological Model to Flood Simulation in the Huaihe River Basin of China
    Li Min
    Lin Zhao-Hui
    Yang Chuan-Guo
    Shao Quan-Xi
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2014, 7 (06) : 493 - 498
  • [48] Spatial and seasonal variations of hydrological responses to climate and land-use changes in a highly urbanized basin of Southeastern China
    Bian, Guodong
    Wang, Guoqing
    Chen, Jie
    Zhang, Jianyun
    Song, Mingming
    HYDROLOGY RESEARCH, 2021, 52 (02): : 506 - 522
  • [49] Responses of hydrological processes to climate change in the Yarlung Zangbo River basin
    Liu, Xiaowan
    Xu, Zongxue
    Liu, Wenfeng
    Liu, Liu
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2019, 64 (16): : 2057 - 2067
  • [50] Changing properties of low flow of the Tarim River basin: Possible causes and implications
    Sun, Peng
    Zhang, Qiang
    Lu, Xixi
    Bai, Yungang
    QUATERNARY INTERNATIONAL, 2012, 282 : 78 - 86