Connectivity of Soft Random Geometric Graphs over Annuli

被引:20
作者
Giles, Alexander P. [1 ]
Georgiou, Orestis [2 ]
Dettmann, Carl P. [1 ]
机构
[1] Univ Bristol, Sch Math, Univ Walk, Bristol BS8 1TW, Avon, England
[2] Toshiba Telecommun Res Lab, 32 Queen Sq, Bristol BS1 4ND, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Random geometric graphs; Statistical mechanics; Graph theory; Network science; Ad hoc networks; Communication theory;
D O I
10.1007/s10955-015-1436-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nodes are randomly distributed within an annulus (and then a shell) to form a point pattern of communication terminals which are linked stochastically according to the Rayleigh fading of radio-frequency data signals. We then present analytic formulas for the connection probability of these spatially embedded graphs, describing the connectivity behaviour as a dense-network limit is approached. This extends recent work modelling ad hoc networks in non-convex domains.
引用
收藏
页码:1068 / 1083
页数:16
相关论文
共 29 条
  • [1] Almiron M. G., 2013, P 14 ACM INT S MOB A, P157
  • [2] The smart-grid solution
    Amin, Massoud
    [J]. NATURE, 2013, 499 (7457) : 145 - 147
  • [3] [Anonymous], 2013, P 2013 IEEE INISTA A
  • [4] UNIT DISK GRAPHS
    CLARK, BN
    COLBOURN, CJ
    JOHNSON, DS
    [J]. DISCRETE MATHEMATICS, 1990, 86 (1-3) : 165 - 177
  • [5] Coon J. P., 2014, 12 INT S MOD OPT MOB
  • [6] Full Connectivity: Corners, Edges and Faces
    Coon, Justin
    Dettmann, Carl P.
    Georgiou, Orestis
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) : 758 - 778
  • [7] Impact of boundaries on fully connected random geometric networks
    Coon, Justin
    Dettmann, Carl P.
    Georgiou, Orestis
    [J]. PHYSICAL REVIEW E, 2012, 85 (01):
  • [8] Dettmann C. P., 2015, P IEEE ICC 2015 LOND
  • [9] Erds P., 1959, Publ. math. debrecen, V6, P290, DOI 10.5486/PMD.1959.6.3-4.12
  • [10] Modelling disease outbreaks in realistic urban social networks
    Eubank, S
    Guclu, H
    Kumar, VSA
    Marathe, MV
    Srinivasan, A
    Toroczkai, Z
    Wang, N
    [J]. NATURE, 2004, 429 (6988) : 180 - 184