A Review of Power System Dynamic State Estimation Techniques

被引:0
|
作者
Shivakumar, N. R. [1 ]
Jain, Amit [1 ]
机构
[1] IIIT, Power Syst Res Ctr, Hyderabad, Andhra Pradesh, India
来源
2008 JOINT INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON) AND IEEE POWER INDIA CONFERENCE, VOLS 1 AND 2 | 2008年
关键词
dynamic state estimation; kalman filter; real time monitoring; square root filter; static state estimation;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
State estimation is a key Energy Management System (EMS) function, responsible for estimating the state of the power system. Power system is a quasi-static system and hence changes slowly with time. Since state estimation is computationally expensive, it is not easy to execute it repetitively at short intervals to achieve real time monitoring of such a changing system. Dynamic State Estimation (DSE) techniques model the time varying nature of the system, which allows it to predict the state vector in advance. This proves to be a major advantage for the operator in performing security analysis and other control center functions. Various techniques for dynamic state estimation are available in the literature. This paper presents a bird's eye view on different methodologies and developments in DSE, based on our comprehensive survey of the available literature.
引用
收藏
页码:502 / 507
页数:6
相关论文
共 50 条
  • [1] POWER SYSTEM TRACKING AND DYNAMIC STATE ESTIMATION
    Jain, Amit
    Shivakumar, N. R.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 277 - +
  • [2] A review of Power System State Estimation: Techniques, State-of-the-art and Inclusion of FACTS controllers
    Karamta, Meera R.
    Jamnani, J. G.
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL POWER AND ENERGY SYSTEMS (ICEPES), 2016, : 533 - 538
  • [3] Feasibility studies of applying Kalman Filter techniques to power system dynamic state estimation
    Huang, Zhenyu
    Schneider, Kevin
    Nieplocha, Jarek
    2007 CONFERENCE PROCEEDINGS IPEC, VOLS 1-3, 2007, : 376 - 382
  • [4] Dynamic State Estimation for Power System Control and Protection IEEE Task Force on Power System Dynamic State and Parameter Estimation
    Liu, Yu
    Singh, Abhinav Kumar
    Zhao, Junbo
    Meliopoulos, A. P. Sakis
    Pal, Bikash
    Ariff, Mohd Aifaa bin Mohd
    Van Cutsem, Thierry
    Glavic, Mevludin
    Huang, Zhenyu
    Kamwa, Innocent
    Mili, Lamine
    Mir, Abdul Saleem
    Taha, Ahmad
    Terzija, Vladimir
    Yu, Shenglong
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (06) : 5909 - 5921
  • [5] Roles of Dynamic State Estimation in Power System Modeling, Monitoring and Operation
    Zhao, Junbo
    Netto, Marcos
    Huang, Zhenyu
    Yu, Samson Shenglong
    Gomez-Exposito, Antonio
    Wang, Shaobu
    Kamwa, Innocent
    Akhlaghi, Shahrokh
    Mili, Lamine
    Terzija, Vladimir
    Meliopoulos, A. P. Sakis
    Pal, Bikash
    Singh, Abhinav Kumar
    Abur, Ali
    Bi, Tianshu
    Rouhani, Alireza
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2462 - 2472
  • [6] Robust dynamic state estimation of power system harmonics
    Kumar, A
    Das, B
    Sharma, J
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2006, 28 (01) : 65 - 74
  • [7] Fast robust power system dynamic state estimation using model transformation
    Wang, Xueyuan
    Zhao, Junbo
    Terzija, Vladimir
    Wang, Shaobu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 114
  • [8] Dynamic state estimation of power system with stochastic delay based on neural network
    Zhang, Guangdou
    Li, Jian
    Cai, Dongsheng
    Huang, Qi
    Hu, Weihao
    ENERGY REPORTS, 2021, 7 (07) : 159 - 166
  • [9] Power system dynamic state estimation using prediction based evolutionary technique
    Basetti, Vedik
    Chandel, Ashwani K.
    Chandel, Rajeevan
    ENERGY, 2016, 107 : 29 - 47
  • [10] Dynamic state estimation of power system harmonics with bad data
    Kumar, A
    Das, B
    Sharma, J
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2005, 33 (12) : 1281 - 1295