Bayesian nonlinear model selection and neural networks: A conjugate prior approach

被引:34
作者
Vila, JP [1 ]
Wagner, V [1 ]
Neveu, P [1 ]
机构
[1] INRA, ENSAM, Lab Anal Syst & Biometrie, F-34060 Montpellier, France
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2000年 / 11卷 / 02期
关键词
Bayesian model selection; conjugate prior distribution; empirical Bayes methods; expected utility criterion; feedforward neural network; nonlinear regression;
D O I
10.1109/72.838999
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to select the best predictive neural-network architecture in a set of several candidate networks, me propose a general Bayesian nonlinear regression model comparison procedure, based on the maximization of an expected utility criterion. This criterion selects the model under which the training set achieves the highest level of internal consistency, through the predictive probability distribution of each model, The density of this distribution is computed as the model posterior predictive density and is asymptotically approximated from the assumed Gaussian likelihood of the data set and the related conjugate prior density of the parameters. The use of such a conjugate prior allows the analytic calculation of the parameter posterior and predictive posterior densities, in an empirical-Bayes-like approach. This Bayesian selection procedure allows us to compare general nonlinear regression models and in particular feedforward neural networks, in addition to embedded models as usual with asymptotic comparison tests.
引用
收藏
页码:265 / 278
页数:14
相关论文
共 29 条
  • [1] BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
  • [2] Bernardo J. M., 1994, BAYESIAN THEORY
  • [3] OPTIMAL MINIMAL NEURAL INTERPRETATION OF SPECTRA
    BORGGAARD, C
    THODBERG, HH
    [J]. ANALYTICAL CHEMISTRY, 1992, 64 (05) : 545 - 551
  • [4] Bunke H., 1980, Mathematische Operationsforschung und Statistik, Series Statistics, V11, P3, DOI 10.1080/02331888008801521
  • [5] Buntine W. L., 1991, Complex Systems, V5, P603
  • [6] An iterative pruning algorithm for feedforward neural networks
    Castellano, G
    Fanelli, AM
    Pelillo, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03): : 519 - 531
  • [7] ON THE GEOMETRY OF FEEDFORWARD NEURAL-NETWORK ERROR SURFACES
    CHEN, AM
    LU, HM
    HECHTNIELSEN, R
    [J]. NEURAL COMPUTATION, 1993, 5 (06) : 910 - 927
  • [8] NEURAL MODELING FOR TIME-SERIES - A STATISTICAL STEPWISE METHOD FOR WEIGHT ELIMINATION
    COTTRELL, M
    GIRARD, B
    GIRARD, Y
    MANGEAS, M
    MULLER, C
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (06): : 1355 - 1364
  • [9] Fahlman S. E., 1990, ADV NEURAL INFORMATI, P524, DOI DOI 10.1190/1.1821929
  • [10] GENERALIZED CROSS-VALIDATION AS A METHOD FOR CHOOSING A GOOD RIDGE PARAMETER
    GOLUB, GH
    HEATH, M
    WAHBA, G
    [J]. TECHNOMETRICS, 1979, 21 (02) : 215 - 223