Generalized Money estimates for the gradient of divergence form parabolic operators with discontinuous coefficients

被引:18
作者
Guliyev, Vagif S. [1 ,2 ]
Softova, Lubomira G. [3 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[2] Azerbaijan Acad Sci, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[3] Univ Naples 2, Dept Civil Engn Design Construct & Environm, Naples, Italy
关键词
Generalized Money spaces; Parabolic operators; Cauchy-Dirichlet problem; Measurable coefficients; BMO; Gradient estimates; SINGULAR INTEGRAL-OPERATORS; MORREY SPACES; MAXIMAL OPERATOR; BMO COEFFICIENTS; EQUATIONS; DOMAINS; BOUNDEDNESS; REGULARITY;
D O I
10.1016/j.jde.2015.03.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy Dirichlet problem for linear divergence form parabolic operators in bounded Reifenberg-flat domains. The coefficients are supposed to be only measurable in one of the space variables and small BMO with respect to the others. We obtain boundedness of the Hardy-Littlewood maximal operator in the generalized Morrey spaces W-rho,W-phi, p is an element of (1, infinity) and weight phi satisfying certain supremum condition. This permits us to obtain Calderon-Zygmund type estimate for the gradient of the weak solution of the problem. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2368 / 2387
页数:20
相关论文
共 42 条
[21]   New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data [J].
Minh-Phuong Tran ;
Thanh-Nhan Nguyen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (04) :1427-1462
[22]   Estimates for fundamental solutions of parabolic equations in non-divergence form [J].
Dong, Hongjie ;
Kim, Seick ;
Lee, Sungjin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 340 :557-591
[23]   PARABOLIC AND ELLIPTIC SYSTEMS IN DIVERGENCE FORM WITH VARIABLY PARTIALLY BMO COEFFICIENTS [J].
Dong, Hongjie ;
Kim, Doyoon .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) :1075-1098
[24]   SOME Lp-ESTIMATES FOR ELLIPTIC AND PARABOLIC OPERATORS WITH MEASURABLE COEFFICIENTS [J].
Krylov, N. V. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (06) :2073-2090
[25]   The obstacle problem for parabolic non-divergence form operators of Hormander type [J].
Frentz, Marie ;
Gotmark, Elin ;
Nystrom, Kaj .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (09) :5002-5041
[26]   On the Lp-theory for second-order elliptic operators in divergence form with complex coefficients [J].
ter Elst, A. F. M. ;
Haller-Dintelmann, R. ;
Rehberg, J. ;
Tolksdorf, P. .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) :3963-4003
[27]   GENERALIZED LOCAL MIXED MORREY ESTIMATES FOR LINEAR ELLIPTIC SYSTEMS WITH DISCONTINUOUS COEFFICIENTS [J].
Akbulut, A. ;
Omarova, M. N. ;
Serbetci, A. .
SOCAR PROCEEDINGS, 2025, (01) :136-142
[28]   Bilinear embedding for divergence-form operators with complex coefficients on irregular domains [J].
Carbonaro, Andrea ;
Dragicevic, Oliver .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (03)
[29]   Lp-estimates for parabolic equations in divergence form with a half-time derivative [J].
Jung, Pilgyu ;
Kim, Doyoon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 443
[30]   ON POISSON OPERATORS AND DIRICHLET-NEUMANN MAPS IN Hs FOR DIVERGENCE FORM ELLIPTIC OPERATORS WITH LIPSCHITZ COEFFICIENTS [J].
Maekawa, Yasunori ;
Miura, Hideyuki .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (09) :6227-6252