Generalized Money estimates for the gradient of divergence form parabolic operators with discontinuous coefficients

被引:18
|
作者
Guliyev, Vagif S. [1 ,2 ]
Softova, Lubomira G. [3 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[2] Azerbaijan Acad Sci, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[3] Univ Naples 2, Dept Civil Engn Design Construct & Environm, Naples, Italy
关键词
Generalized Money spaces; Parabolic operators; Cauchy-Dirichlet problem; Measurable coefficients; BMO; Gradient estimates; SINGULAR INTEGRAL-OPERATORS; MORREY SPACES; MAXIMAL OPERATOR; BMO COEFFICIENTS; EQUATIONS; DOMAINS; BOUNDEDNESS; REGULARITY;
D O I
10.1016/j.jde.2015.03.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy Dirichlet problem for linear divergence form parabolic operators in bounded Reifenberg-flat domains. The coefficients are supposed to be only measurable in one of the space variables and small BMO with respect to the others. We obtain boundedness of the Hardy-Littlewood maximal operator in the generalized Morrey spaces W-rho,W-phi, p is an element of (1, infinity) and weight phi satisfying certain supremum condition. This permits us to obtain Calderon-Zygmund type estimate for the gradient of the weak solution of the problem. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2368 / 2387
页数:20
相关论文
共 50 条