Rosochatius Deformed Soliton Hierarchy with Self-Consistent Sources

被引:0
作者
Yao Yu-Qin [2 ]
Zeng Yun-Bo [1 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Rosochatius deformation; soliton hierarchy with self-consistent sources; higher-order constrained flows; Lax representation; NONLINEAR SCHRODINGER-EQUATION; INTEGRABLE SYSTEMS; CONSTRAINED FLOWS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Integrable Rosochatius deformations of finite-dimensional integrable systems are generalized to the soliton hierarchy with self-consistent sources. The integrable Rosochatius deformations of the Kaup-Newell hierarchy with self-consistent sources, of the TD hierarchy with self-consistent sources, and of the Jaulent-Miodek hierarchy with self-consistent sources, together with their Lax representations are presented.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 31 条
[1]   DARBOUX COORDINATES AND LIOUVILLE-ARNOLD INTEGRATION IN LOOP ALGEBRAS [J].
ADAMS, MR ;
HARNAD, J ;
HURTUBISE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (02) :385-413
[2]  
ARNOLD VI, 1978, MATH METHOD CLASSICA, P60402
[3]   Spinning strings in AdS5xS5:: New integrable system relations -: art. no. 086009 [J].
Arutyunov, G ;
Russo, J ;
Tseytlin, AA .
PHYSICAL REVIEW D, 2004, 69 (08) :18
[4]   Neumann and Neumann-Rosochatius integrable systems from membranes on AdS4 x S7 [J].
Bozhilov, Plamen .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (08)
[5]   Quasi-periodic and periodic solutions for coupled nonlinear Schrodinger equations of Manakov type [J].
Christiansen, PL ;
Eilbeck, JC ;
Enolskii, VZ ;
Kostov, NA .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001) :2263-2281
[6]  
DELEON M, 1985, GEN CLASSICAL MECH F, P60402
[7]   A note on spin chain/string duality [J].
Dimov, H ;
Rashkov, RC .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (18) :4337-4353
[8]   CLASSICAL AND QUANTUM INTEGRABLE SYSTEMS IN (GL)OVER-TILDE(2)(+)ASTERISK AND SEPARATION OF VARIABLES [J].
HARNAD, J ;
WINTERNITZ, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (02) :263-285
[9]   NONLINEAR EVOLUTION EQUATIONS ASSOCIATED WITH ENERGY-DEPENDENT SCHRODINGER POTENTIALS [J].
JAULENT, M ;
MIODEK, I .
LETTERS IN MATHEMATICAL PHYSICS, 1976, 1 (03) :243-250
[10]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801