Model-based analysis and design of waveforms for efficient neural stimulation

被引:37
作者
Grill, Warren M. [1 ,2 ,3 ,4 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27706 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27706 USA
[3] Duke Univ, Dept Neurobiol, Durham, NC 27706 USA
[4] Duke Univ, Dept Surg, Durham, NC 27706 USA
来源
COMPUTATIONAL NEUROSTIMULATION | 2015年 / 222卷
关键词
Neural model; Electrical stimulation; Deep brain stimulation; Energy efficiency; Selectivity; Optimization; DEEP BRAIN-STIMULATION; MOTOR CORTEX STIMULATION; MYELINATED NERVE; PARKINSONS-DISEASE; TRANSIENT DEPOLARIZATION; ELECTRICAL-STIMULATION; SELECTIVE ACTIVATION; STIMULUS PARAMETERS; EXCITATION; FIBERS;
D O I
10.1016/bs.pbr.2015.07.031
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The design space for electrical stimulation of the nervous system is extremely large, and because the response to stimulation is highly nonlinear, the selection of stimulation parameters to achieve a desired response is a challenging problem. Computational models of the response of neurons to extracellular stimulation allow analysis of the effects of stimulation parameters on neural excitation and provide an approach to select or design optimal parameters of stimulation. Here, I review the use of computational models to understand the effects of stimulation waveform on the energy efficiency of neural excitation and to design novel stimulation waveforms to increase the efficiency of neural stimulation.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
[31]   Model-based optimized phase-deviation deep brain stimulation for Parkinson 's disease [J].
Yu, Ying ;
Hao, Yuqing ;
Wang, Qingyun .
NEURAL NETWORKS, 2020, 122 :308-319
[32]   Model-based deconstruction of cortical evoked potentials generated by subthalamic nucleus deep brain stimulation [J].
Kumaravelu, Karthik ;
Oza, Chintan S. ;
Behrend, Christina E. ;
Grill, Warren M. .
JOURNAL OF NEUROPHYSIOLOGY, 2018, 120 (02) :662-680
[33]   Model-based design and analysis of glucose isomerization process operation [J].
Papadakis, Emmanouil ;
Pedersen, Sven ;
Tula, Anjan K. ;
Fedorova, Marina ;
Woodley, John M. ;
Gani, Rafiqul .
COMPUTERS & CHEMICAL ENGINEERING, 2017, 98 :128-142
[34]   Iterative model-based experimental design for efficient uncertainty minimization of chemical mechanisms [J].
vom Lehn, Florian ;
Cai, Liming ;
Pitsch, Heinz .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (01) :1033-1042
[35]   A novel approach for model-based design of gastric pacemakers [J].
Wang, Luman ;
Malik, Avinash ;
Roop, Partha S. ;
Cheng, Leo K. ;
Paskaranandavadivel, Niranchan ;
Ai, Weiwei .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 116
[36]   Design of an adaptable intrafascicular electrode (AIR) for selective nerve stimulation by model-based optimization [J].
Ciotti, Federico ;
Cimolato, Andrea ;
Valle, Giacomo ;
Raspopovic, Stanisa .
PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (05)
[37]   Neural Adaptation to Responsive Stimulation: A Comparison of Auditory and Deep Brain Stimulation in a Rat Model of Absence Epilepsy [J].
Saillet, Sandrine ;
Gharbi, Sadok ;
Charvet, Guillaume ;
Deransart, Colin ;
Guillemaud, Regis ;
Depaulis, Antoine ;
David, Olivier .
BRAIN STIMULATION, 2013, 6 (03) :241-247
[38]   Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes [J].
Howell, Bryan ;
Huynh, Brian ;
Grill, Warren M. .
JOURNAL OF NEURAL ENGINEERING, 2015, 12 (04)
[39]   Model-Based Analysis of Pathway Recruitment During Subthalamic Deep Brain Stimulation [J].
Bower, Kelsey L. ;
Noecker, Angela M. ;
Frankemolle-Gilbert, Anneke M. ;
Mcintyre, Cameron C. .
NEUROMODULATION, 2024, 27 (03) :455-463
[40]   A Real-time Simulation Platform Design Based on Neural Mass Model for Deep Brain Stimulation [J].
Wei, Xile ;
Zhou, Yifei ;
Chang, Siyuan ;
Lu, Meili ;
Yi, Guosheng ;
Wang, Jiang .
PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, :5850-5855