Size and Ion-Doping Effects on Magnetic, Optical, and Phonon Properties of CuAlO2 Nanoparticles

被引:2
作者
Apostolova, Iliana Naumova [1 ]
Apostolov, Angel Todorov [2 ]
Wesselinowa, Julia Mihailova [3 ]
机构
[1] Univ Forestry, Fac Forest Ind, Sofia 1756, Bulgaria
[2] Univ Architecture Civil Engn & Geodesy, Fac Hydrotech, Sofia 1046, Bulgaria
[3] Univ Sofia, Dept Phys, Sofia 1164, Bulgaria
关键词
CuAlO2; ion doping; magnetization; band gap; phonon energy; microscopic model; MG-DOPED CUALO2; MATERIALS DESIGN; DELAFOSSITE; SEMICONDUCTORS; FERROMAGNETISM; TEMPERATURE; FILMS; AL;
D O I
10.3390/magnetochemistry8120169
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The magnetic, optical, and phonon properties of ion-doped CuAlO2 nanoparticles on the Cu or Al site are theoretically investigated. The room temperature ferromagnetism in CuAlO2 nanoparticles can be due to the surface, size, and doping effects. The magnetization increases with the decreasing nanoparticle size. The different radii of the transition metal ion and the host C-u ion lead to compressive strain, to the enhancment of the exchange interaction constants, and to increased magnetization Ms and Curie temperature T-C. By substitution with Mn or Cr on the Al site, tensile strain, a decrease in Ms, and an increase in dopants are observed. The size and ion-doping influence on the band-gap energy is also discussed. The phonon energy w decreases, whereas the phonon damping g increases with increasing temperature and decreasing NP size. They show a kink around TC similar to 400 K. The behavior of w and g for different ion dopings is observed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Investigation of Effect of Defects on the Structural, Optical, and Magnetic Properties of CuAlO2
    Boyraz, C.
    Guler, A.
    Karatas, O.
    Aksu, P.
    Alphan, M. Can
    Arda, L.
    ACTA PHYSICA POLONICA A, 2022, 142 (04) : 464 - 472
  • [2] Size and doping dependence of the phonon properties of SnO2 nanoparticles
    Apostolov, A. T.
    Apostolova, I. N.
    Wesselinowa, J. M.
    MODERN PHYSICS LETTERS B, 2018, 32 (21):
  • [3] First principles study on band structure and optical properties of N-doped CuAlO2
    Wang, Ye
    Liu, Weiwei
    Chen, Hongxia
    Chen, Xiaobo
    Liu, Chenglin
    Zhuang, Guoce
    Wang, Rong
    Shen, Fahua
    Wang, Heng
    Hu, Xiaoyan
    Miao, Zhongzheng
    PHYSICA B-CONDENSED MATTER, 2018, 545 : 167 - 171
  • [4] Effects of Mg substitution on the structural, optical, and electrical properties of CuAlO2 thin films
    Jiang, H. F.
    Zhu, X. B.
    Lei, H. C.
    Li, G.
    Yang, Z. R.
    Song, W. H.
    Dai, J. M.
    Sun, Y. P.
    Fu, Y. K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (05) : 1768 - 1773
  • [5] Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia
    Apostolova, Iliana
    Apostolov, Angel
    Wesselinowa, Julia
    MATERIALS, 2023, 16 (06)
  • [6] Size, external fields and ion doping effects on the multiferroic properties of hexagonal YMnO3 nanoparticles
    Apostolov, A. T.
    Apostolova, I. N.
    Wesselinowa, J. M.
    MATERIALS TODAY COMMUNICATIONS, 2022, 30
  • [7] Tuning the Electronic and Magnetic Properties of CuAlO2 Nanocrystals Using Magnetic Dopants
    Ray, Nirat
    Gupta, Varun
    Sarma, Liza
    Kush, Priya
    Nag, Jadupati
    Sapra, Sameer
    ACS OMEGA, 2018, 3 (01): : 509 - 513
  • [8] Electronic structure and optical properties of CuAlO2 under biaxial strain
    Ghosh, C. K.
    Sarkar, D.
    Mitra, M. K.
    Chattopadhyay, K. K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (23)
  • [9] Effects of chalcogen substitution on electronic properties and chemical bondings of delafossite CuAlO2
    Liu, Qi-Jun
    Zhang, Ning-Chao
    Liu, Fu-Sheng
    Liu, Zheng-Tang
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (08): : 1630 - 1634
  • [10] Effect of Deposition Laser Energy on the Optical Properties of CuAlO2 Films
    Deng Zan-Hong
    Fang Xiao-Dong
    Tao Ru-Hua
    Dong Wei-Wei
    Zhou Shu
    Meng Gang
    Shao Jing-Zhen
    JOURNAL OF INORGANIC MATERIALS, 2011, 26 (03) : 281 - 284