Combining Self-supervised Learning and Active Learning for Disfluency Detection

被引:4
|
作者
Wang, Shaolei [1 ]
Wang, Zhongyuan [1 ]
Che, Wanxiang [1 ]
Zhao, Sendong [1 ]
Liu, Ting [1 ]
机构
[1] Harbin Inst Technol, 2 YiKuang St,Tech & Innovat Bldg,HIT Sci Pk, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Disfluency detection; self-supervised learning; active learning; pre-training technology;
D O I
10.1145/3487290
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spoken language is fundamentally different from the written language in that it contains frequent disfluencies or parts of an utterance that are corrected by the speaker. Disfluency detection (removing these disfluencies) is desirable to clean the input for use in downstream NLP tasks. Most existing approaches to disfluency detection heavily rely on human-annotated data, which is scarce and expensive to obtain in practice. To tackle the training data bottleneck, in this work, we investigate methods for combining self-supervised learning and active learning for disfluency detection. First, we construct large-scale pseudo training data by randomly adding or deleting words fromunlabeled data and propose two self-supervised pre-training tasks: (i) a tagging task to detect the added noisy words and (ii) sentence classification to distinguish original sentences from grammatically incorrect sentences. We then combine these two tasks to jointly pre-train a neural network. The pre-trained neural network is then fine-tuned using human-annotated disfluency detection training data. The self-supervised learning method can capture task-special knowledge for disfluency detection and achieve better performance when fine-tuning on a small annotated dataset compared to other supervised methods. However, limited in that the pseudo training data are generated based on simple heuristics and cannot fully cover all the disfluency patterns, there is still a performance gap compared to the supervised models trained on the full training dataset. We further explore how to bridge the performance gap by integrating active learning during the fine-tuning process. Active learning strives to reduce annotation costs by choosing the most critical examples to label and can address the weakness of self-supervised learning with a small annotated dataset. We show that by combining self-supervised learning with active learning, our model is able to match state-of-the-art performance with just about 10% of the original training data on both the commonly used English Switchboard test set and a set of in-house annotated Chinese data.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Hyperspectral target detection using self-supervised background learning
    Ali, Muhammad Khizer
    Amin, Benish
    Maud, Abdur Rahman
    Bhatti, Farrukh Aziz
    Sukhia, Komal Nain
    Khurshid, Khurram
    ADVANCES IN SPACE RESEARCH, 2024, 74 (02) : 628 - 646
  • [32] Online Self-Supervised Deep Learning for Intrusion Detection Systems
    Nakip, Mert
    Gelenbe, Erol
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 5668 - 5683
  • [33] Self-Supervised Video Representation Learning by Video Incoherence Detection
    Cao, Haozhi
    Xu, Yuecong
    Mao, Kezhi
    Xie, Lihua
    Yin, Jianxiong
    See, Simon
    Xu, Qianwen
    Yang, Jianfei
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (06) : 3810 - 3822
  • [34] Contrastive self-supervised learning for diabetic retinopathy early detection
    Ouyang, Jihong
    Mao, Dong
    Guo, Zeqi
    Liu, Siguang
    Xu, Dong
    Wang, Wenting
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (09) : 2441 - 2452
  • [35] Domain adaptation and self-supervised learning for surgical margin detection
    Santilli, Alice M. L.
    Jamzad, Amoon
    Sedghi, Alireza
    Kaufmann, Martin
    Logan, Kathryn
    Wallis, Julie
    Ren, Kevin Y. M.
    Janssen, Natasja
    Merchant, Shaila
    Engel, Jay
    McKay, Doug
    Varma, Sonal
    Wang, Ami
    Fichtinger, Gabor
    Rudan, John F.
    Mousavi, Parvin
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (05) : 861 - 869
  • [36] Reduce the Difficulty of Incremental Learning With Self-Supervised Learning
    Guan, Linting
    Wu, Yan
    IEEE ACCESS, 2021, 9 : 128540 - 128549
  • [37] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257
  • [38] Self-Supervised Adversarial Variational Learning
    Ye, Fei
    Bors, Adrian. G.
    PATTERN RECOGNITION, 2024, 148
  • [39] Self-Supervised Learning of Robot Manipulation
    Tommy, Robin
    Krishnan, Athira R.
    2020 4TH INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTS (ICACR 2020), 2020, : 22 - 25
  • [40] Self-Supervised Learning for Recommender System
    Huang, Chao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 3440 - 3443