APPLICATION OF MICROGENETIC ALGORITHM FOR NONUNIFORM MESH ARTIFICIAL ANISOTROPY ALTERNATING-DIRECTION-IMPLICIT-FINITE-DIFFERENCE TIME-DOMAIN METHOD

被引:0
|
作者
Zhang, Yan [1 ]
Lue, Shan-Wei [1 ]
Zhang, Jun [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
artificial anisotropy ADI-FDTD; microgenetic algorithm (MGA); numerical dispersion; NUMERICAL DISPERSION; ADI-FDTD; REDUCTION;
D O I
10.1002/mop.24601
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method to reduce the numerical dispersion of the conventional alternating-direction-implicit finite-difference time-domain (ADI-FOTD) method is proposed. First, the numerical formulations (ire modified with the artificial anisotropy, and the numerical dispersion relation is derived. Second, the relative permittivity tensor of the artificial anisotropy can be obtained by the microgenetic algorithm (NIGA), which is a genetic algorithm with a very small population. Then, the capabilities and potentialities of this nest, method tire demonstrated numerically using two nonuniform-mesh examples. The numerical results of the proposed method are compared with those of the FDTD method and the conventional ADI-FDTD method, respectively. Furthermore, the reduction of the numerical dispersion is investigated as the objective function of the MGA. It is found that this new method is accurate and efficient by choosing proper objective function. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2301-2304, 2009; Published online in Wiley Inter-Science (www.interscience.wiley.com). DOI 10.1002/mop.24601
引用
收藏
页码:2301 / 2304
页数:4
相关论文
共 50 条
  • [21] Unsplit-field perfectly matched layer for higher-order alternating direction implicit finite-difference time-domain method
    Leung, YF
    Chan, CH
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2004, 43 (02) : 130 - 133
  • [22] A technique for improving the accuracy of the nonuniform finite-difference time-domain algorithm
    Yu, WH
    Mittra, R
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (03) : 353 - 356
  • [23] New alternating-direction-implicit finite-difference-time-domain method for photonic crystal devices
    Obayya, S. S. A.
    Pinto, D.
    2007 WORKSHOP ON COMPUTATIONAL ELECTROMAGNETICS IN TIME-DOMAIN, 2007, : 76 - 79
  • [24] Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma
    Song, Wanjun
    Zhang, Hou
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 349 : 122 - 136
  • [25] Unconditionally stable implicit finite-difference time-domain method
    Gao, Wen-Jun
    Lu, Shan-Wei
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2002, 30 (06): : 900 - 902
  • [26] Averaged material parameters and boundary conditions for the vibroacoustic finite-difference time-domain method with a nonuniform mesh
    Toyoda, Masahiro
    Takahashi, Daiji
    Kawai, Yasuhito
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2012, 33 (04) : 273 - 276
  • [27] Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function
    Kim, E. -K.
    Ha, S. -G.
    Lee, J.
    Park, Y. B.
    Jung, K. -Y.
    OPTICS EXPRESS, 2015, 23 (02): : 873 - 881
  • [28] Indoor Wireless Channel Analysis Using Alternating Direction Implicit Pseudospectral Time-Domain Method
    Zheng, Hong-xing
    2016 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC), 2016, : 557 - 559
  • [29] Analysis of alternating direction implicit multiresolution time-domain method using Daubechies' scaling function
    Yang Jing
    Ju Jilong
    Sui Qiang
    2008 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOLS 1-4, 2008, : 663 - +
  • [30] Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method
    Singh, Gurpreet
    Tan, Eng Leong
    Chen, Zhi Ning
    OPTICS LETTERS, 2011, 36 (08) : 1494 - 1496