Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation

被引:19
作者
Chen Chi
Zhou Zi-Xiang [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
SYSTEMS;
D O I
10.1088/0256-307X/26/8/080504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Myrzakulov-I equation is a 2+1-dimensional generalization of the Heisenberg ferromagnetic equation and has a non-isospectral Lax pair. The Darboux transformation with non-constant spectral parameter is constructed and an extra constraint on the spectral parameter for the existence of the Darboux transformation is derived. Explicit expressions of the solutions of the Myrzakulov-I equation are presented.
引用
收藏
页数:4
相关论文
共 9 条
[1]  
CIESLINSKI J, 1995, J MATH PHYS, V36, P5670, DOI 10.1063/1.531282
[2]  
Gu C. H., 2006, Darboux Transformations in Integrable Systems
[3]  
GU CH, 1987, LETT MATH PHYS, V13, P179, DOI 10.1007/BF00423444
[4]   Darboux transformations for a lax integrable system in 2n dimensions [J].
Ma, WX .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (01) :33-49
[5]   Deformation of surfaces, integrable systems, and Chern-Simons theory [J].
Martina, L ;
Myrzakul, K ;
Myrzakulov, R ;
Soliani, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (03) :1397-1417
[6]   Gauge equivalence between (2+l)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrodinger-type equations [J].
Myrzakulov, R ;
Nugmanova, GN ;
Syzdykova, RN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (47) :9535-9545
[7]   A (2+1)-dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures [J].
Myrzakulov, R ;
Vijayalakshmi, S ;
Nugmanova, GN ;
Lakshmanan, M .
PHYSICS LETTERS A, 1997, 233 (4-6) :391-396
[8]   On the (2+1)-dimensional integrable inhomogeneous Heisenberg ferromagnet equation [J].
Zhang, Zhen-Huan ;
Deng, Ming ;
Zhao, Wei-Zhong ;
Wu, Ke .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (10)
[9]  
Zhao SL, 2009, CHINESE PHYS LETT, V26, DOI 10.1088/0256-307X/26/3/030202