KOROVKIN TYPE THEOREMS AND ITS APPLICATIONS VIA αβ- STATISTICALLY CONVERGENCE

被引:15
作者
Braha, Naim L. [1 ]
Loku, Valdete [2 ]
机构
[1] Univ Prishtine, Dept Math & Comp Sci, Ave Mother Teresa 5, Prishtine 10000, Kosovo
[2] Univ Appl Sci, Ferizaj 70000, Kosovo
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2020年 / 14卷 / 04期
关键词
Weighted alpha beta- statistical convergence; generalized Norlund summability; statistical convergence; Korovkin theorem; Vornovskaya theorem; SUMMABILITY;
D O I
10.7153/jmi-2020-14-62
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will introduce the generalized concept of the weighted alpha beta- statistical convergence, introduced by Aktuglu. We will show a new alpha beta- weighted statistical convergence and based on this definition we will prove a kind of the Korovkin type theorems. Also we will show the rate of the convergence for this kind of weighted alpha beta- statistical convergence and Voronovskaya type theorem.
引用
收藏
页码:951 / 966
页数:16
相关论文
共 17 条
[1]   Korovkin type approximation theorems proved via αβ-statistical convergence [J].
Aktuglu, Huseyin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :174-181
[2]  
Altomare F., 2012, Surv. Approx. Theory, V5, P92
[3]   On I⟩2-strong convergence of numerical sequences and Fourier series [J].
Braha, N. L. ;
Mansour, T. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :113-126
[4]  
Braha NL, 2018, BULL MATH ANAL APPL, V10, P53
[5]   Some Weighted Equi-Statistical Convergence and Korovkin Type-Theorem [J].
Braha, Naim L. .
RESULTS IN MATHEMATICS, 2016, 70 (3-4) :433-446
[6]   TAUBERIAN CONDITIONS UNDER WHICH λ-STATISTICAL CONVERGENCE FOLLOWS FROM STATISTICAL SUMMABILITY (V, λ) [J].
Braha, Naim L. .
MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) :695-703
[7]   Λ2-Weighted statistical convergence and Korovkin and Voronovskaya type theorems [J].
Braha, Naim L. ;
Loku, Valdete ;
Srivastava, H. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :675-686
[8]   A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean [J].
Braha, Naim L. ;
Srivastava, H. M. ;
Mohiuddine, S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 :162-169
[9]  
Fast H, 1951, C MATH, V2, P241
[10]  
GAL S., 2015, JAEN J APPROX, V7, P97