Convolutional neural network and riemannian geometry hybrid approach for motor imagery classification

被引:27
作者
Gao, Chang [1 ]
Liu, Wenchao [1 ]
Yang, Xian [1 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao, Peoples R China
关键词
Brain-computer interface; Motion imagery; Convolution neural network; Riemannian manifold; EEG; COMMON SPATIAL-PATTERN; BRAIN-COMPUTER INTERFACES; EEG;
D O I
10.1016/j.neucom.2022.08.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The electroencephalogram (EEG) signal is commonly applied in the brain-computer interface (BCI) system of the motor imagery paradigm because it is noninvasive and has a high time resolution. This paper proposes a motor imagery classification method based on convolutional neural networks and Riemannian geometry to overcome the problem of noise and extreme values impacting motor imagery classification performance. The time-domain properties of EEG signals are extracted using multiscale temporal convolutions, whereas the spatial aspects of EEG signals are extracted using multiple convolutional kernels learned by spatial convolution. The extracted features are mapped to a Riemannian manifold space, and bilinear mapping and logarithmic operations are performed on the features to solve the problem of noise and extreme values. The effectiveness of the proposed method is validated using four types of motor imagery in the BCI competition IV dataset 2a to evaluate the classification ability. The experimental results show that the proposed approach has obvious advantages in the classification performance of motor imagery. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 190
页数:11
相关论文
共 33 条
[21]   Sub-band common spatial pattern (SBCSP) for brain-computer interface [J].
Novi, Quadrianto ;
Guan, Cuntai ;
Dat, Tran Huy ;
Xue, Ping .
2007 3RD INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, VOLS 1 AND 2, 2007, :204-+
[22]   MI-EEGNET: A novel convolutional neural network for motor imagery classification [J].
Riyad, Mouad ;
Khalil, Mohammed ;
Adib, Abdellah .
JOURNAL OF NEUROSCIENCE METHODS, 2021, 353
[23]   Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer's Disease and Mild Cognitive Impairment [J].
Ruiz-Gomez, Saul J. ;
Gomez, Carlos ;
Poza, Jesus ;
Gutierrez-Tobal, Gonzalo C. ;
Tola-Arribas, Miguel A. ;
Cano, Monica ;
Hornero, Roberto .
ENTROPY, 2018, 20 (01)
[24]   Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks [J].
Sakhavi, Siavash ;
Guan, Cuntai ;
Yan, Shuicheng .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) :5619-5629
[25]   MobileNetV2: Inverted Residuals and Linear Bottlenecks [J].
Sandler, Mark ;
Howard, Andrew ;
Zhu, Menglong ;
Zhmoginov, Andrey ;
Chen, Liang-Chieh .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4510-4520
[26]   Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization [J].
Schirrmeister, Robin Tibor ;
Springenberg, Jost Tobias ;
Fiederer, Lukas Dominique Josef ;
Glasstetter, Martin ;
Eggensperger, Katharina ;
Tangermann, Michael ;
Hutter, Frank ;
Burgard, Wolfram ;
Ball, Tonio .
HUMAN BRAIN MAPPING, 2017, 38 (11) :5391-5420
[27]   Epileptic seizure detection using hybrid machine learning methods [J].
Subasi, Abdulhamit ;
Kevric, Jasmin ;
Canbaz, M. Abdullah .
NEURAL COMPUTING & APPLICATIONS, 2019, 31 (01) :317-325
[28]   A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain-Computer Interfaces [J].
Thomas, Kavitha P. ;
Guan, Cuntai ;
Lau, Chiew Tong ;
Vinod, A. P. ;
Ang, Kai Keng .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (11) :2730-2733
[29]   Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices [J].
Xie, Xiaofeng ;
Yu, Zhu Liang ;
Lu, Haiping ;
Gu, Zhenghui ;
Li, Yuanqing .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (06) :504-516
[30]   A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges [J].
Yadav, Drishti ;
Yadav, Shilpee ;
Veer, Karan .
JOURNAL OF NEUROSCIENCE METHODS, 2020, 346